SciELO - Scientific Electronic Library Online

 
vol.50 número2A mid infrared study of low-luminosity AGNs with WISERadio continuum sources associated with the HH 92 and HH 34 Jets índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de astronomía y astrofísica

versión impresa ISSN 0185-1101

Rev. mex. astron. astrofis vol.50 no.2 Ciudad de México oct. 2014

 

Star formation efficiency and flattened gradients in M31

 

F. Robles-Valdez, L. Carigi, and M. Peimbert

 

Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal, 70-264, México D.F., 04510, México (frobles, carigi, peimbert@astro.unam.mx).

 

Received 2013 December 16.
Accepted 2014 May 21.

 

RESUMEN

Presentamos un modelo de evolución química para M31 basado en un escenario de formación pronunciado. Se reproducen las tres restricciones observacionales principales del disco de M31: la masa total bariónica, la masa de gas y la abundancia de O/H. El modelo muestra buen acuerdo con las observaciones de: SFR(r), Mstars(r) y los gradientes de C/H, N/H, Mg/H, Si/H, S/H, Ar/H, Cr/H, Fe/H y Z. Para reproducir la masa de gas observada, encontramos que la eficiencia de formación estelar varía en el espacio, para el disco completo, y es constante en el tiempo la mayor parte de la evolución (t < 12.8 Gyr). Para reproducir la SFR(r) observada, encontramos que la eficiencia disminuye casi a cero para 12.8 < t(Gyr) < 13.0 y r > 12kpc. Todos los gradientes Xi/H predichos muestran tres pendientes diferentes, debido a la dependencia en r de la eficiencia de formación estelar, y de la formación galáctica dentro-fuera.

 

ABSTRACT

We present a chemical evolution model for M31 based on a pronounced inside-out formation scenario. The model reproduces the three main observational constraints of the M31 disk: the radial distributions of the total baryonic mass, the gas mass, and the O/H abundance. The model shows good agreement with the observed: SFR(r), Mstars(r), the C/H, N/H, Mg/H, Si/H, S/H, Ar/H, Cr/H, Fe/H, and Z gradients. From reproducing the observed gas mass, we find that the star formation efficiency is variable in space, for the whole disk, and is constant in time for most of the evolution (t < 12.8 Gyr). From reproducing the observed SFR, we find that the efficiency decreases almost to zero for 12.8 < t(Gyr) < 13.0 and r > 12kpc. All the predicted Xi/H(r) gradients show three different slopes, due to the r-dependence of the the star formation efficiency and the inside-out galactic formation.

Key Words: galaxies: abundances — galaxies: evolution — galaxies: individual (M31).

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

ACKNOWLEDGMENTS

We thank the referee for a careful review of the manuscript and several useful suggestions which contributed to improve this paper. We are grateful to Antonio Peimbert for many helpful discussions and to Fatemeh Tabatabaei for providing us with the updated data of the surface density of the atomic and molecular hydrogen. We are also grateful to Laura Toribio-San Cipraino for providing us relevant data before publication. F. Robles-Valdez is grateful to Conacyt, México, for a doctoral grant. L. C. is grateful for the financial support provided by the Ministry of Science and Innovation of the Kingdom of Spain (Grants AYA2010-16717 and AYA2011-22614). L. C. and M. P. acknowledge the financial support provided by Conacyt of Mexico (grant 129753).

 

REFERENCES

Ade, P., Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio-Barandela, F., Aumont, J., et al. 2013, in press, (arXiv:1303.5076)        [ Links ]

Asplund, M., Grevesse, N., Sauval, A., & Scott P. 2009, ARAA, 47, 481        [ Links ]

Avila-Reese, V., Firmani, C., & Vázquez-Semadeni, E. 2003, RMxAC, 17, 66.         [ Links ]

Berkhuijsen, E. 1977, A & A, 57, 9        [ Links ]

Block, D., Bournaud, F., Combes, F., Groess, R., Barmby, P., Ashby, M., Fazio, G., Pahre, M., & Willner, S. 2006, Nature, 443, 832        [ Links ]

Boissier, S., Gil de Paz, A., Boselli, A., Madore, B., Buat, V., Cortese, L., Burgarella, D., et al. 2007, ApJS, 173, 524        [ Links ]

Boissier, S., Prantzos, N., Boselli, A., & Gavazzi, G. 2003, MNRAS, 346, 1215        [ Links ]

Braun, R., 1991, ApJ, 372, 54        [ Links ]

Bresolin, F., Kennicutt, R., & Ryan-Weber, E. 2012, ApJ, 750, 122        [ Links ]

Carigi, L. 1996, RMxAA, 32, 179        [ Links ]

Carigi, L., García-Rojas, J., Meneses-Goytia, S. 2013, RMxAA, 49, 253        [ Links ]

Carigi, L., & Peimbert, M. 2011, RMxAA, 47, 139        [ Links ]

Carigi, L., & Peimbert, M. 2008, RMxAA, 44, 341        [ Links ]

Cescutti, G., Matteucci, F., Caffau, E., & Francois, P. 2012, A & A, 540, 33        [ Links ]

Chiappini, C., Matteucci, F., & Gratton, R. 1997, ApJ, 477, 765        [ Links ]

Colucci, E., Bernstein, A., Cameron, S., McWilliam, A., & Cohen, J. 2009, ApJ, 704, 385        [ Links ]

Croxall, K., Smith, J., Brandl, B., Groves, B., Kennicutt, R., Kreckel, K., Johnson, B., et al. 2013, ApJ, 777, 96        [ Links ]

Esteban, C., Bresolin, F., Peimbert, M., García-Rojas, J., Peimbert, A., & Mesa-Delgado, A. 2009, ApJ, 700, 654 (E09)        [ Links ]

Esteban, C., Carigi, L., Copetti, M., García-Rojas, J., Mesa-Delgado, A., Castaneda, H., & Péquignot, D. 2013, MNRAS, 433, 382        [ Links ]

Fu, J., Hou, J., & Yin, J. 2009, ApJ, 696, 668        [ Links ]

Goddard, Q., Bresolin, F., Kennicutt, R., Ryan-Weber, E., & Rosales-Ortega, F. 2011, MNRAS, 412, 1246        [ Links ]

Greggio, L., & Renzini, A. 1983, A & A, 118, 217        [ Links ]

Hernández-Martínez, L., Carigi, L., Peña, M., & Peimbert, M. 2011, A & A, 535, 118        [ Links ]

Hiromoto, N., Maihara, T., Oda, N., & Okuda, H. 1983, PASJ, 35, 41        [ Links ]

Hirshi, R. 2007, A & A, 461, 571        [ Links ]

Hirshi, R., Meynet, G., & Maeder, A. 2005, A & A, 433, 1013        [ Links ]

Karakas, A. 2010, MNRAS, 403, 1413        [ Links ]

Kennicutt, R. 1998, ApJ, 498, 541        [ Links ]

Kennicutt, R., & Evans, N. 2012, ARAA, 50, 531        [ Links ]

Kobayashi, C., Karakas, A., & Umeda, H. 2011, MNRAS, 414, 3231        [ Links ]

Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N., & Ohkubo, T. 2006, ApJ, 653, 1145        [ Links ]

Kroupa, P., Tout, C., & Gilmore, G. 1993, MNRAS, 262, 545        [ Links ]

Leroy, A., Walter, F., Brinks, E., Bigiel, F., de Blok, W., Madore, B., & Thornley, M. 2008, AJ, 136, 2782        [ Links ]

Maeder, A. 1992, A & A, 264, 105        [ Links ]

Marcon-Uchida, M., Matteucci, F., & Costa, R. 2010, A & A, 520, A35        [ Links ]

Mattsson, L. 2008, Physica Scripta, 133, 014027        [ Links ]

Mesa-Delgado, A., Esteban, C., García-Rojas, J., Luridiana, V., Bautista, M., Rodríguez, M., López-Martín, L., & Peimbert, M. 2009, MNRAS, 395, 855        [ Links ]

Nieten, Ch., et al. 2006, A & A, 453, 459        [ Links ]

Nomoto, K., Iwamoto, N., Nakasato, N., Thielemann, F., Brachwitz, F., Tsujimoto, T., Kubo, Y., & Kishimotp, N. 1997, NuPha, 621, 467        [ Links ]

Pagel, B. 2009, Nucleosynthesis and Chemical Evolution of Galaxies (Cambridge: Cambridge Univ. Press)        [ Links ]

Peimbert, A., Peimbert, M. 2010, ApJ, 724, 791        [ Links ]

Peimbert, A., Peña-Guerrero, M., & Peimbert, M. 2012, ApJ, 753, 39        [ Links ]

Peimbert, M. 1967, ApJ, 150, 825        [ Links ]

Peimbert, M., Luridiana, V., & Peimbert, A. 2007a, ApJ, 666, 636        [ Links ]

Peimbert, M., Luridiana, V., Peimbert, A., & Carigi, L. 2007b, ASPC, 374, 81        [ Links ]

Peña-Guerrero, M., Peimbert, A., & Peimbert, M. 2012, ApJ, 756L, 14        [ Links ]

Porter, R. L., Bauman, R. P., Ferland, G. J., & MacAdam, K. B. 2005, ApJ, 622, L73        [ Links ]

Porter, R. L., Ferland, G. J., & MacAdam, K. B. 2007, ApJ, 657, 327        [ Links ]

Porter, R., Ferland, G., Storey, P., & Detisch, M. 2013, MNRAS, 433L, 89        [ Links ]

Prantzos, N. 2012, A & A, 542, A67        [ Links ]

Przybilla, N, Butler, K., & Kudritzky, R. 2006, preprint conference proceeding, (arXiv:0611.044)        [ Links ]

Renda, A., Kawata, D., Fenner, Y., & Gibson, B. 2005, MNRAS, 356, 1071        [ Links ]

Robles-Valdez, F., Carigi, L., & Peimbert, M. 2013, MNRAS, 429, 2351        [ Links ]

Rosales-Ortega, F., Díaz, A., Kennicutt, R., & Sánchez, S. 2011, MNRAS, 415, 2439        [ Links ]

Sánchez, S., Rosales-Ortega, F., Páramo-Iglesias, J., et al. 2013, A & A submitted, arXiv:1311:7052        [ Links ]

Sanders, N., Caldwell, N., McDowell, J., & Harding, P. 2012, ApJ, 758, 133S        [ Links ]

Scalo, J. 1986, Fund. Cosm. Phys., 11, 1        [ Links ]

Spitoni, E., Matteucci, F., & Marcon-Uchida, M. 2013, A & A, 551, 123        [ Links ]

Tabatabaei, F., & Berkhuijsen, E. 2010, A & A, 517, A77        [ Links ]

Tamm, A., Tempel, E., Tenjes, P., Tihhonova, O., & Tuvikene, T. 2012, A & A, 546, 4        [ Links ]

Tinsley, B. 1980, Fundam. Cosm. Phys., 5, 287        [ Links ]

Toribio-San Cipriano, L., et al. 2014, in preparation        [ Links ]

Venn, K., McCarthy, J., Lennon, D., Przybilla, N., Kudritzki, R., & Lemke, M. 2000, ApJ, 541, 610        [ Links ]

Villardel, F., Ribas, I., Jordi, C., Fitzpatrick, E., & Guinan, E. 2010, A & A, 509, A70        [ Links ]

Vlajić, M. 2010, PASA, 27, 252        [ Links ]

Walterbos, R., & Kennicutt, A. 1988, A & A, 198, 61        [ Links ]

Widrow, L., Perrett, K., & Suyu, S. 2003, ApJ, 588, 311        [ Links ]

Worthey, G., España, A., McArthur, L., & Courteau, S. 2005, ApJ, 631, 820        [ Links ]

Wyse, R., & Silk, J. 1989, ApJ, 339, 700        [ Links ]

Yin, J., Hou, J., Prantzos, N., Boissier, S., Chang, R., Shen, S., & Zhang, B. 2009 A & A, 505, 497        [ Links ]

Zamora-Avilés, M., & Vázquez-Semadeni, E. 2013, ApJ, submitted (arXiv:1308.4918)        [ Links ]

Zurita, A., & Bresolin, F. 2012, MNRAS, 427, 1463        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons