SciELO - Scientific Electronic Library Online

 
vol.44 número2Hydrodynamical Simulations of the Non-Ideal Gravitational Collapse of a Molecular Gas CloudThe interaction of a YSO outflow with the surrounding molecular cloud core índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de astronomía y astrofísica

versão impressa ISSN 0185-1101

Rev. mex. astron. astrofis vol.44 no.2 México Out. 2008

 

Energy and Angular Momentum of Dilaton Black Holes

 

Marcelo Samuel Berman

 

Instituto Albert Einstein, Av. Candido Hartmann, 575, No. 17, 80730–440, Curitiba–PR, Brazil. (msberman@institutoalberteinstein.org).

 

Received 2007 September 20
Accepted 2008 May 6

 

RESUMEN

Dando seguimiento a un artículo previo, revisamos los resultados para la energía y momento angular de un hoyo negro de Kerr–Newman, y extendemos el cálculo para el caso de un dilaton en rotación, obtenido a partir del modelo de Garfinkle et al. (1991, 1992). Mostramos que hay, en lo que se refiere solamente a la energía y momento angular, una interacción entre los campos, de forma que, el gravitacional y el electromagnético pueden ser ocultados por la intensidad del campo escalar.

 

ABSTRACT

Following a prior paper, we review the results for the energy and angular momentum of a Kerr–Newman black hole, and then calculate the same properties for the case of a generalised rotating dilaton of the type derived, without rotation, by Garfinkle et al. (1991, 1992). We show that there is, as far as it refers only to the energy and angular momentum, an interaction among the fields, so that, the gravitational and electromagnetic fields may be obscured by the strength of the scalar field.

Key Words: black hole physics — gravitation — magnetic fields — relativity.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

REFERENCES

Aguirregabiria, J. M., Chamorro, A., & Virbhadra, K. S. 1996, Gen. Relativ. Gravitation, 28, 1393         [ Links ]

Berman, M. S. 2007a, RevMexAA, 43, 297         [ Links ]

––––––––––. 2007b, Introduction to General Relativity and the Cosmological Constant Problem (New York: Nova Science)         [ Links ]

––––––––––. 2007c, Introduction to General Relativistic and Scalar–Tensor Cosmologies (New York: Nova Science)         [ Links ]

––––––––––. 2008, A Primer in Black Holes, Mach's Principle and Gravitational Energy (New York: Nova Science)        [ Links ]

Brans, C., & Dicke, R. H. 1961, Phys. Rev., 124, 925         [ Links ]

Chamorro, A., & Virbhadra, K. S. 1996, Int. J. Mod. Phys. D, 5, 251         [ Links ]

Collins, P. D. B., Martin, A. D., & Squires, E. J. 1989, Particle Physics and Cosmology (New York: Wiley–Interscience)         [ Links ]

Eckart, A., Straubmeier, C., & Schodel, R. 2005, The Black Hole at the Center of the Milky Way (Singapore: World Scientific)         [ Links ]

Falcone, A. D., et al. 2008, in AIP Conf. Proc. 1000, Gamma Ray Burst, ed. M. Galassi, D. Palmer, & E. Fenimore (New York: AIP), 91         [ Links ]

Faraoni, V. 2004, Cosmology in Scalar Tensor Gravity (Dordrecht: Kluwer)         [ Links ]

Fujii, Y., & Maeda, K.–I. 2003, The Scalar Tensor Theory of Gravitation (Cambridge: Cambridge Univ. Press)         [ Links ]

Garfinkle, D., Horowitz, G. T., & Strominger, A. 1991, Phys. Rev. D, 43, 3140         [ Links ]

––––––––––. 1992, Phys. Rev. D, 45, 3888        [ Links ]

Halpern, P. 2008, Ap & SS, 313, 357        [ Links ]

Kreitler, P. 2006a, Trends in Black–Hole Research (New York: Nova Science)        [ Links ]

––––––––––. 2006b, New Developments in Black–Hole Research (New York: Nova Science)        [ Links ]

––––––––––. 2006c, Focus in Black–Hole Research (New York: Nova Science)         [ Links ]

Lee, H. K., & Park, M. G. 2002, Black Hole Astrophysics 2002: Proceedings of the Sixth APCTP Winter School (Singapore: World Scientific)         [ Links ]

Levinson, A. 2006, in Trends in Black Hole Research, ed. P. V. Kreitler (New York: Nova Science), 119         [ Links ]

Martínez, C., & Troncoso, R. 2006, Phys. Rev. D, 74, 064007         [ Links ]

Noyola, E., Gebhardt, K., & Bergmann, M. 2008, ApJ, 676, 1008         [ Links ]

Pope, E., Pittard, J., Hartquist, T., & Falle, S. 2008, MNRAS, 385, 1779        [ Links ]

Vagenas, E. C. 2003, Int. J. Mod. Phys. A, 18, 5949         [ Links ]

Virbhadra, K. S. 1990a, Phys. Rev. D, 41, 1086        [ Links ]

––––––––––. 1990b, Phys. Rev. D, 42, 2919        [ Links ]

––––––––––. 1990c, Phys. Rev. D, 42, 1066        [ Links ]

Xulu, S. S. 1998, Int. J. Mod. Phys. D, 7, 773        [ Links ]

Wald, R. M. 1994, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (Chicago: Chicago Univ. Press)         [ Links ]

Wesson, P. S. 1999, Space–Time–Matter: Modern Kaluza, Klein Theory (Singapore: World Scientific)         [ Links ]

––––––––––. 2006, Five Dimensional Physics (Singapore: World Scientific)        [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons