SciELO - Scientific Electronic Library Online

 
vol.62 issue2Improving the optical and crystalline properties on CdS thin films growth on small and large area by using CBD techniqueElectro chemical characterization of V X NbY C Z/BiX TiY O Z coatings produced through thermo-reactive diffusion and the sputtering technique author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.62 n.2 México Mar./Apr. 2016

 

Investigación

 

Symmetries of the hamiltonian operator and constants of motion

 

G.F. Torres del Castillo1 and J.E. Herrera Flores2

 

1 Departamento de Física Matemática, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue., México.

2 Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Puebla, 72570 Puebla, Pue., México.

 

Received 15 October 2015;
accepted 25 November 2015

 

Abstract

It is shown that, in the framework of non-relativistic quantum mechanics, any conserved Hermitian operator (which may depend explicitly on the time) is the generator of a one-parameter group of unitary symmetries of the Hamiltonian and that, conversely, any one-parameter family of unitary symmetries of the Hamiltonian is generated by a conserved Hermitian operator.

Keywords: Conserved quantities; symmetries.

 

Resumen

Se muestra que, en el marco de la mecánica cuántica no relativista, cualquier operador hermitiano conservado (el cual puede depender explícitamente del tiempo) es el generador de un grupo uniparamétrico de simetrías unitarias del hamiltoniano y que, recíprocamente, cualquier familia uniparamétrica de simetrías unitarias del hamiltoniano es generada por un operador hermitiano conservado.

Palabras clave: Cantidades conservadas; simetrías.

PACS: 03.65.-w

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. A.S. Davydov, Quantum Mechanics (Pergamon Press, Oxford, 1965), §19.         [ Links ]

2. W. Greiner and B. Müller, Quantum Mechanics: Symmetries, 2nd ed. (Springer-Verlag, Berlin, 1994).         [ Links ]

3. J. Singh, Quantum Mechanics: Fundamentals and Applications to Technology (Wiley, New York, 1997), sec. 6.2        [ Links ]

4. E. Merzbacher, Quantum Mechanics, 3rd ed. (Wiley, New York, 1998), chap. 17.         [ Links ]

5. N. Zettili, Quantum Mechanics: Concepts and Applications (Wiley, Chichester, 2001), sec. 3.7.3.         [ Links ]

6. J.J. Sakurai and J. Napolitano, Modern Quantum Mechanics, 2nd ed. (Addison-Wesley, San Francisco, 2011), sec. 4.1.         [ Links ]

7. J. Pade, Quantum Mechanics for Pedestrians 2: Applications and Extensions (Springer, Cham, 2014), sec. 21.1.1.         [ Links ]

8. K. Gottfried and T.-M. Yan, Quantum Mechanics: Fundamentals, 2nd ed. (Springer-Verlag, New York, 2003), sec. 2.5 and chap. 7.         [ Links ]

9. S. Weinberg, Lectures on Quantum Mechanics (Cambridge University Press, Cambridge, 2013), secs. 3.4-3.6.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License