SciELO - Scientific Electronic Library Online

 
vol.62 número2Tribological performance evaluation of coated steels with TiNbCN subjected to tribo-chemical wear in Ringer's solutionImproving the optical and crystalline properties on CdS thin films growth on small and large area by using CBD technique índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.62 no.2 México mar./abr. 2016

 

Investigación

 

Optical band gap energy and urbach tail of CdS:Pb2+ thin films

 

M. Cháveza, H. Juáreza, M. Pacioa, X. Mathewc, R. Gutiérrezb L. Chaltelb, M. Zamorab and O. Portillob,*

 

a Centro de Investigación en Dispositivos Semiconductores, del Instituto de Ciencias de la Universidad Autónoma de Puebla, Av. 14 Sur Col Jardines de San Manuel, Ciudad Universitaria, Puebla, Pue., México.

b Lab. Mat. Sci. Facultad de Ciencias Químicas, Universidad Autónoma de Puebla. Puebla, Pue., P.O. Box 1067,72001 México. * Tel. (01 222) 2-29-55-00 Ext. 7519. e-mail: osporti@yahoo.mx

c Instituto de Energía Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, México.

 

Received 14 May 2015;
accepted 27 November 2015

 

Abstract

PbS-doped CdS nanomaterials were successfully synthetized using chemical bath. Transmittance measurements were used to estimate the optical band gap energy. Tailing in the band gap was observed and found to obey Urbach rule. The diffraction X-ray (XRD) show that the size of cristallites is in the ~33 nm to 12 nm range. The peaks belonging to primary phase are identified at 20 = 26.5° and 20 = 26.00° corresponding to CdS and PbS respectively. Thus, a shift in maximum intensity peak from 20 = 26.4° to 28.2° is clear indication of possible transformation of cubic to hexagonal phase. Also peaks at 20 = 13.57°, 15.9° correspond to lead perchlorate thiourea. The effects on films thickness and substrate doping on the band gap energy and the width on tail were investigated. Increasing doping give rise to a shift in optical absorption edge ~0.4 eV

Keywords: Cadmium sulfide; thin films; solar cells; optical band gap; urbach tail.

PACS: 81.10.Bk; 81.05.Dz; 81.10.-h; 81.10.Dn; 81.15.-z; 81.15.Rs

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. M.A. Islam, Yusuf Salaiman, Nowshad Amin, Chalcogenide Letters 8 (2011)65-75.         [ Links ]

2. R. Lozada Morales, O. Portillo Moreno, S. A. Tomas, O. Zelaya Angel, Optical Materials 35 (2013) 1023-1028.         [ Links ]

3. R. Palomino Merino, O. Portillo Moreno, L. A. Chaltel Lima, R. Gutiérrez Perez, M. De Icaza Herrera, and V. Castaño, Nanocrystalline thin films. Journal of Nanomaterials http//dx.doi.org/10.115/2013/507647        [ Links ]

4. S. Mahanty, D. Basak, F. Rueda, M. Leon, J. Electron. Materials 28 (1999) 559-564.         [ Links ]

5. V. Bilgin, S. Kose, F. Atay, and I. Akuz, Mater Chem. Phys. 94 (2005) 103-308.         [ Links ]

6. O. Portillo Moreno et al., Properties of PbS:Ni2+ Nanocrystals in thin films by chemical bath deposition ISRN Nanotechnology http://dx.doi.org/10.1155/2013/507647.         [ Links ]

7. Shadia Jamil Ikhmayies, Riyand N. Ahmad-Bitar, J. of Mater Res. Technol 2 (2013)221-227.         [ Links ]

8. P.P. Sahay, R.K. Nath, S. Tewari, Cryst. Res. Technol. 42 (2007) 275-280.         [ Links ]

9. O. Portillo Moreno et al., J. of Electrochem. Soc. 153 (2006) 926-930.         [ Links ]

10. Sonal Singhal, Amit Kumar Chawla, Hari Om Gupta, Ramesh Chandra, Nanoscale Res. Lett. 5 (2010) 323-331.         [ Links ]

11. K. Subba Ramaiah, R.D. Pilkington, A.E. Hill, R.D. Tomlinson, A.K. Bhatnagar, Mat. Chem. and Phys. 68 (2001) 22-30.         [ Links ]

12. A. Abdolahzaden Ziabari, F.E. Ghodsi, J. of Luminescence 141 (2013) 121-129.         [ Links ]

13. M.A. Barote, A.A. Yadav, L.P. Deshmukh, E. U. Masumdar, J. of Non-Oxide Glasses 2 (2010) 151-165.         [ Links ]

14. Hani Khallaf, Guangyu Chai, Oleg Lupan Lee Chow, S. Park, A. Schulte, J. Phys. D: Appl. Phys. 41 (2008) 185304.         [ Links ]

15. Hideyuki Kanazawa and Sadao Adachi, J. Appl. Phys. 83 (1998) 5997-6001.         [ Links ]

16. A. Cortes, H. Gomez, R.E. Marotti, G. Riveros, E.A. Dalchiele, Solar Energy Materials & Solar Cell. 82 (2004) 21-34.         [ Links ]

17. J. Pantoja Enríquez, X. Mathew, Solar Energy Mat. & Solar cell. 76 (2003) 313-322        [ Links ]

18. J. Melsheimer, D. Ziegler, Thin Solid Films. 129 (1895) 35-37.         [ Links ]

19. Koichi Yamaguchi, Tsukasa Yoshida, Takashi Sugiura, Hideki Minourea, J. Phys. Chem. B10 (1998) 9677-9686.         [ Links ]

20. J.A. Davila Pintle et al., J. of Appl. Phys. 101 (2007) 013712-1, 013712-5.         [ Links ]

21. M. Kamruzzaman, R. Dutta, J. Podder, Semiconductors 46 (2012) 957-961.         [ Links ]

22. J.A. Lange's Handbook of Chemistry, (McGraw-Hill Book Co., Beijing, 1999).         [ Links ]

23. M. Froment and D. Lincot, Phase for mation process in the solution at atomic level: Metal chalcogenide semiconductor Electrochemica Acta 40 (1995) 1293-1303.         [ Links ]

24. R. Ortega-Borges, D. Lincot, J. Electrochem. Soc. 140 (1993) 3464.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons