SciELO - Scientific Electronic Library Online

vol.62 número1Transporte de electrones en anillos cuánticos de confinamiento variableSimulation of cylindrical Poiseuille flow in multiparticle collision dynamics using explicit fluid-wall confining forces índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.62 no.1 México ene./feb. 2016




Electrical characterization of GaN/ALN heterostructures grown by molecular beam epitaxy on silicon substrates


J.B. Rojas-Trigosa, M. López-Lópezb, M.A. Venegasb, G.S. Contreras-Puentec, D. Jimenez-Olartec and G. Santana-Rodríguezd


a Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada. Legaria No. 694 Colonia Irrigación, 11500 México D.F., México.

b Departamento de Física, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Avenida IPN No. 2508 Colonia San Pedro Zacatenco, 07360 México D.F., México.

c Instituto Politécnico Nacional, Departamento de Física, Escuela Superior de Física y Matemáticas, Avenida IPN Edificio 9, Unidad Profesional Adolfo López Mateos, Zacatenco, 07738 México D.F., México.

d Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Colonia Coyoacán, 04510 México D.F., México.


Received 26 August 2014;
accepted 6 November 2015



In this paper, n-type gallium nitride thin films were grown on p-type and n-type silicon substrates by Molecular Beam Epitaxy technique, employing an aluminum nitride layer as an insulator buffer coating. The samples constitute primary semiconductor-insulator-semiconductor or SIS heterostructures, on which silver electrical contacts were deposited superficially by sputtering for electrical characterization purposes. The current intensity vs. voltage curves, charge carriers density, diffusion coefficient and mobility of charge carriers were determined in darkness conditions. Under AM1.5 homogenous illumination, the samples exhibited relatively large open-circuit voltage values, but low values for energy conversion efficiencies. Additionally, the dependency in photon energy of the open-circuit voltage was determined, in the range 1.77 eV to 4.13 eV, showing a minimum in the energy corresponding to the GaN energy band gap. Finally we discuss the prevailing charge transfer mechanism.

Keywords: Electrical characterization; gallium nitride; Hall effect; molecular beam epitaxy; semiconductor-insulator-semiconductor structures





This work has been supported partially by ICyT-DF (Now SECITI-DF) PICCO10-29 Project, SENER-CONACYT México Project No. 151076, SIP-IPN and COFAA-IPN, México. Finally, the authors thanks the facilities provided by COTEBAL-IPN for the realization of this work. A special acknowledgement is made to M. Ramirez-López, M. Pérez-Caro and Y. L. Casallas-Moreno from CINVESTAV-IPN.



1. M. Pérez-Caro et al., Group III-nitrides nanostructures, In: Advanced Summer School in Physics 2011 (AIP Conf. Proc. 1420, American Institute of Physics, Melville, New York, 2012) pp 164-168.         [ Links ]

2. Y. Kuwahara, et al., Appl. Phys. Exp. 3 (2010) 111001.         [ Links ]

3. Mira Misra, Theodore D. Moustakas, Robert P. Vaudo, Rajminder Singh and Kanai S. Shah, Photoconducting ultraviolet detectors based on GaN films grown by electron cyclotron resonance molecular beam epitaxy, In: Richard B. Hoover and Mark B. Williams (eds.) (Proc. SPIE Vol. 2519, X-Ray and Ultraviolet Sensors and Applications. San Diego, CA, 1995) pp 78-86.         [ Links ]

4. O. B. Shchekin et al., Appl. Phys. Lett. 89 (2006) 071109.         [ Links ]

5. Shuji Nakamura et al., Jpn. J. Appl. Phys. 35 (1996) L74.         [ Links ]

6. R. Graupner, QiYe, T. Warwick, and E. Bournet-Courchesne, J. Cryst. Growth 217 (2000) 55.         [ Links ]

7. M. Tamura and M. López-López, Superficies y Vacio 13 (2001) 80.         [ Links ]

8. Nikishin et al., MRS Internet J. Nitride Semicond. Res. 5S1 (2000) W8.3.         [ Links ]

9. M.S.N.M. Brandt, N.M. Johnsonn, R.J. Molnar, R. Singh, and T.D. Moustakas, Appl. Phys. Lett. 64 (1994) 2264.         [ Links ]

10. C.W. Chin, F.K. Yam, K.P. Beh, Z. Hassan, M.A. Ahmad, Y. Yusof, S.K. Mohd Bakhori, Thin Solid Films 520 (2011) 756.         [ Links ]

11. Junqiao Wu, J. Appl. Phys. 106 (2009) 011101.         [ Links ]

12. S.J. Pearton et al., J. Appl. Phys. 93 (2003) 1.         [ Links ]

13. S. Pezzagna, J. Brault, M. Leroux, J. Massies and M. de Micheli, J. Appl. Phys. 103 (2008) 123112.         [ Links ]

14. Naser M. Ahmed, Zaliman Sauli, Uda Hashim and Yarub Al-Douri, Int. J. Nanoelectronics and Materials 2 (2009) 189.         [ Links ]

15. L.J. van der Pauw, Phillips Res. Repts. 13 (1958) 1.         [ Links ]

16. D.L. Rode and D K Gaskill, Appl. Phys. Lett. 6 (1995) 1972.         [ Links ]

17. M. Asif Khan, M.S. Shur and Q. Chen, Appl. Phys. Lett. 68 (1996) 3022.         [ Links ]

18. Alexei Simaschevici, Dormidont Serban and Leonid Bruc, Solar Cells on the Base of Semiconductor-Insulator-Semiconductor Structures, In: Solar Cells-Silicon Wafer-Based Technologies (ed.) Prof. Leonid A. Kosyachenko (JanezaTrdine 9, 51000, Rijeka, Croatia: InTech, 2011) pp. 299-332.         [ Links ]

19. J. F. Muth et al., Appl. Phys. Lett. 71 (1997) 2572.         [ Links ]

20. O. Ambacher, W. Rieger, P. Ansmann, H. Angerer, T. D. Moustakas, M, Stutzman, Sol. State Commun. 97 (1996) 365.         [ Links ]

21. S.M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, N.Y, 1981).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons