SciELO - Scientific Electronic Library Online

vol.62 número1Analysis of the adiabatical pulsation of CepheidsChaotic synchronization of irregular complex network with hysteretic circuit-like oscillators in hamiltonian form and its application in private communications índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.62 no.1 México ene./feb. 2016




Hamiltonian dynamics: four dimensional BF-like theories with a compact dimension


A. Escalante and M. Zarate Reyes


Instituto de Física Luis Rivera Terrazas, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48 72570 Puebla. Pue., México, e-mail:;


Received 29 July 2015;
accepted 23 October 2015



A detailed Dirac's canonical analysis for a topological four dimensional BF-like theory with a compact dimension is developed. By performing the compactification process we find out the relevant symmetries of the theory, namely, the full structure of the constraints and the extended action. We show that the extended Hamiltonian is a linear combination of first class constraints, which means that the general covariance of the theory is not affected by the compactification process. Furthermore, in order to carry out the correct counting of physical degrees of freedom, we show that must be taken into account reducibility conditions among the first class constraints associated with the excited KK modes. Moreover, we perform the Hamiltonian analysis of Maxwell theory written as a BF-like theory with a compact dimension, we analyze the constraints of the theory and we calculate the fundamental Dirac's brackets, finally the results obtained are compared with those found in the literature.

Keywords: Topological theories; extra dimensions; Hamiltonian dynamics.





This work was supported by CONACyT under Grant No. CB-2014-01/ 240781. We would like to thank R. Cartas-Fuentevilla for discussion on the subject and reading of the manuscript.



1. T. Matos and J. A. Nieto, Rev Mex. Fis. 39 (1993) S81-S131.         [ Links ]

2. M. Gogberashvili, A. H. Aguilar, D. M. Morejon and R. R. M. Luna, Phys. Lett. B 725 (2013) 208-211. arXiv:1202.1608.         [ Links ]

3. M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1986); J. Polchinski, String Theory (Cambridge University Press, Cambridge, 1998);         [ Links ] S. T. Yau (ed.), Mathemathical Aspects of String Theory (World Scientific, Singapore, 17 1987).         [ Links ]

4. A. Perez-Lorenzana, J. Phys. Conf. Ser. 18 (2005) 224.         [ Links ]

5. A. Muck, A. Pilaftsis and R. Ruckl, Phys. Rev. D 65 (2002) 085037.         [ Links ]

6. I. Antoniadis, Phys. Lett. B 246 (1990) 377.         [ Links ]

7. J.D. Lykken, Phys. Rev. D 54 (1996) 3693.         [ Links ]

8. K.R. Dienes, E. Dudas, and T. Gherghetta, Phys. Lett. B 436 (1998) 55;         [ Links ] Nucl. Phys. B 537 (1999) 47.         [ Links ]

9. L. Nilse, hep-ph/0601015.

10. G. Weiglein et al. (Physics Interplay of the LHC and the ILC),

11. H. Novales-Sanchez and J. J. Toscano, Phys. Rev. D 82 (2010) 116012.         [ Links ]

12. J. A. Nieto, J. Socorro and O. Obregon, Phys. Rev. Lett. 76 (1996) 3482; e-Print: gr-qc/9402029        [ Links ]

13. L. Freidel and A. Starodubtsev, Quantum gravity in terms of topological observables, preprint (2005), arXiv: hepth/0501191.

14. A. Escalante, Phys. Lett. B 676 (2009) 105-111.         [ Links ]

15. J. Govaerts, in Proc. Third Int. Workshop on Contemporary Problems in Mathematical Physics (COPROMAPH3 ), Cotonou (Republic of Benin), 1-7 November 2003.         [ Links ]

16. A. Escalante, J. Lopez-Osio, Int. J. Pure Appl. Math. 75 (2012) 339-352.         [ Links ]

17. A. Gaona, J. Antonio Garcia, Int. J. Mod. Phys. A 22 (2007) 851-867.         [ Links ]

18. K. Sundermeyer Constrained Dynamics, Lecture Notes in Physics vol. 169, Spinger-Verlag, Berlin Heidelberg New York, 1982.         [ Links ]

19. A. Escalante, J. Berra, Int. J. Pure Appl. Math. 79 (2012) 405423.         [ Links ]

20. M. Mondragon, M. Montesinos, J. Math. Phys. 47 (2006) 022301.         [ Links ]

21. A. Muck, A. Pilaftsis and R. Ruckl, Lect. Notes Phys. 647 (2004) 189.         [ Links ]

22. A. Escalante and I. Rubalcava, Int. J. Geom. Meth. Mod. Phys 9 (2012) 1250053.         [ Links ]

23. L. Castellani, Annals Phys. 143 (1982) 357.         [ Links ]

24. M. Henneaux and C. Teitelboim Quantization of Gauge Systems, Princeton University Press, Princeton, New Jersey, 1992.         [ Links ]

25. G. De los Santos and R. Linares, AIP Conf. Proc. 1256 (2010) 178.         [ Links ]

26. A. Escalante and M. Zarate, Annals of Phys, 353 (2015) 163178.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons