SciELO - Scientific Electronic Library Online

vol.61 issue6Raman scattering from Ge1-xSn x (x ≤ 0.14) alloysMHD effects on natural convection laminar flow from a horizontal circular cylinder in presence of radiation author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.61 n.6 México Nov./Dec. 2015




A conjecture for the algorithmic decomposition of paths over an SU(3) ADE graph


J.A. Pineda, E. Isasi and M.I. Caicedo


Departamento de Física, Universidad Simón Bolívar, Apartado Postal 89000, Caracas 1080-A, Venezuela.


Received 13 April 2015;
accepted 28 August 2015



Through a geometric understanding of the creation, cap, annihilation and cup operators for ADE graphs in SU (3) we propose the first steps towards an algorithm that would allow one to write an arbitrary elementary path as an ordered combination of creation and cap operators acting upon an essential path. We propose a sketch of a proof and use our proposal for some examples for the A2 and E5 graphs of the SU (3) family. Attaining this decomposition is an important step in obtaining the path formulation of the quantum Algebra of a modular invariant RCFT.

Keywords: Rational conformal field theory; ADE classification; essential paths; SU (3) Temperley-Lieb algebra; Ocenanu cells; quantum groups; graph theory; integrable systems.

PACS: 02.10.Ox; 02.20.Uw; 02.30.Ik





1. A. Cappelli, C. Itzykson, and J.B. Zuber, Modular invariant partition functions in two-dimensions, Nucl. Phys., B 280 (1987) 445-465.         [ Links ]

2. D.E. Evans and M. Pugh, Munster J. Math. 2 (2009) 95-142; 2 (2009)95-142.         [ Links ]

3. D.E. Evans and P.R. Pinto, Commun. Math. Phys. 237 (2003) 309-363.         [ Links ]

4. R. Coquereaux, E. Isasi, and G. Schieber, Notes on TQFT Wire Models and Coherence Equations for SU(3) Triangular Cells. SIGMA, 6:99, (December 2010).         [ Links ]

5. J.A. Pineda, E. Isasi, and M.I. Caicedo, Essential paths space on ADE SU(3) graphs: A geometric approach. ArXiv e-prints, (July 2014).         [ Links ]

6. A. Ocneanu, Paths on coxeter diagrams: fron platonic solids and singularities to minimal models and subfactors. In Lectures on Operator Theory, volume 33 of Fields Institute Monographs, American Mathematical Society, (1999). pp. 245-323.         [ Links ]

7. R. Coquereaux, A. O. García, and R. Trinchero, J. Geom. Phys. 36 (2000) 22-59.         [ Links ]

8. R. Coquereaux and R. Trinchero, Adv. Theor. Math. Phys. 8 (2004) 189-216.         [ Links ]

9. R. Trinchero, Revista de la Unión Matemática Argentina, 51 (2010) 147-170.         [ Links ]

10. V.B. Petkova and J.B. Zuber, Phys. Lett. B 504 (2001) 157-164.         [ Links ]

11. R. Coquereaux, J. Geom. Phys. 57 (2007) 387-434.         [ Links ]

12. P. Di Francesco, P. Mathieu, and D. Senechal, Conformal field theory (Springer, 1999).         [ Links ]

13. Robert Coquereaux, The A(2) Ocneanu quantum groupoid (2003).         [ Links ]

14. D. Hammaoui, The smallest Ocneanu quantumgrupoid of SU(3) type. AJSE, 33 (2008) 99.         [ Links ]

15. J.A. Pineda, E. Isasi, and M. I. Caicedo, Alternative formulation for the operator algebra over the space ofpaths in a ADE SU(3) graph. ArXiv e-prints, (February 2015).         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License