SciELO - Scientific Electronic Library Online

 
vol.61 issue6Time evolution of spinor perturbations in regular black holesA polynomial model of purely affine gravity author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.61 n.6 México Nov./Dec. 2015

 

Investigación

 

Phenomenological and microscopic model analysis of elastic scattering reactions of 18O by 24Mg, 28Si, 58Ni, 64Zn, 90Zr, 120Sn, and 208Pb target nuclei

 

M. Ayguna, O. Kocadagb, and Y. Sahinb

 

a Department of Physics, Bitlis Eren University, Bitlis, Turkey.

b Department of Physics, Ataturk University, Erzurum, Turkey.

 

Received 16 June 2015;
accepted 30 July 2015

 

Abstract

In the present study, the optical potentials are obtained to describe the interactions of 18O at different incident energies. With this goal, the elastic scattering angular distribution data measured for many systems, ranging from 24Mg to 208Pb are analyzed by using the phenomeno-logical model (PM) and the double folding model (DFM) within the framework of optical model (OM). It is presented that the theoretical results with the PM and the DFM are in very good agreement with both the experimental data and the results of previous studies. A new global set of imaginary potential of the double folding calculations is derived to describe the interactions of 18O at low energies. Also, the volume integrals of potentials, the cross sections and x2/N values obtained by means of the theoretical calculations for each system are given.

Keywords: Optical model; elastic scattering.

PACS: 24.10.Ht; 24.50.+g; 25.70.-z

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. M. Aygun, Commun. Theor. Phys. 60 (2013) 69-72.         [ Links ]

2. M. Aygun and I. Boztosun, Few-Body Syst. 55 (2014) 203-209.         [ Links ]

3. M. Aygun, Acta Phys. Pol. B 45 (2014) 1875.         [ Links ]

4. M. Aygun, I. Boztosun and Y. Sahin, Phys. At. Nucl. 75 (2012) 963-968.         [ Links ]

5. M. Aygun, Y. Kucuk, I. Boztosun, and Awad A. Ibraheem, Nucl. Phys. A 848 (2010) 245-259.         [ Links ]

6. R.F. Simões et al., Phys. Lett. B 527 (2002) 187-192.         [ Links ]

7. D.S. Monteiro et al., Nucl. Phys. A 725 (2003) 60-68.         [ Links ]

8. R.N. Sagaidak et al., Phys. Rev. C 76 (2007) 034605.         [ Links ]

9. A.T. Rudchik et al., Nucl. Phys. A 860 (2011) 8-21.         [ Links ]

10. A.T. Rudchik et al., Nucl. Phys. A 927 (2014) 209-219.         [ Links ]

11. T.K. Steinbach et al., Phys. Rev. C 90 (2014) 041603(R).         [ Links ]

12. M. Bernas et al., Phys. Rev. C 22 (1980) 1872.         [ Links ]

13. M.C. Mermaz et al., Phys. Rev. C 19 (1979) 794.         [ Links ]

14. J.J.S. Alves et al., Nucl. Phys. A 748 (2005) 59-74.         [ Links ]

15. S. Salém-Vasconcelos et al., Phys. Rev. C 50 (1994) 927.         [ Links ]

16. V. Jha, B.J. Roy, A. Chatterjee and H. Machner, Eur. Phys. J. A 19 (2004) 347-354.         [ Links ]

17. B.C. Robertson et al., Phys. Rev. C 4 (1971) 2176.         [ Links ]

18. E. Vulgaris, L. Grodzins, S.G. Steadman and R. Ledoux, Phys. Rev. C 33 (1986) 2017.         [ Links ]

19. G.R. Satchler, Direct Nuclear Reactions (Oxford university Press, Oxford, 1983).         [ Links ]

20. Reference Input Parameter Library (RIPL-3), http://www-nds.iaea.org/RIPL-3/.         [ Links ]

21. D.T. Khoa, G.R. Satchler and W. von Oertzen, Phys. Rev. C 51 (1995) 2069.         [ Links ]

22. I.J. Thompson, Computer Phys. Rep. 7 (1988) 167.         [ Links ]

23. M. Aygun, Eur. Phys. J. A 48 (2012) 145.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License