SciELO - Scientific Electronic Library Online

 
vol.61 número5Solitones no autónomos en fibras ópticasEquilibrium profiles of liquids in tilted Taylor-Hauksbee cells índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.61 no.5 México sep./oct. 2015

 

Investigación

 

Optical and structural properties of PbS:Bi3+ nanocrystals

 

R. Gutiérrez Péreza, O. Portillo Morenoa,*, L. Chaltel Limaa, M. Chévez Portillob, R. Palomino Merinoc, and M. Zamora Totozintlea

 

a Materials Science Laboratory, Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, P.O. Box 1067, Puebla, Pue., 72001 México. * Tel. (01 222) 2-29-55-00 Ext. 7519. e-mail: osporti@yahoo.com.mx

b Universidad Autónoma de Puebla, Puebla, Pue., 72001 México.

c Facultad de Ciencias Fisicomatemáticas, Posgrado en Optoelectrónica de la Benemérita Universidad Autónoma de Puebla, Puebla, P.O. Box 1067, C.P. 72001, México.

 

Received 22 April 2015.
Accepted 15 June 2015.

 

Abstract

We report here the growth of nanocrystalline PbS thin films by chemical bath and the effects of doping on the structural and electronics properties as a function of Bi3+ concentration. Doping of such PbS films with Bi3+ produces considerable optical and structural changes that have an effect on the material properties. The morphological changes of the layers were followed by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). X-ray diffraction (XRD) spectra show growth of the zinc blende phase. The grain size for the undoped samples was found to be ~ 32 nm, whereas that for the doped samples was 25-15 nm, thus confirming AFM and SEM results. A conspicuous shift for the forbidden band gap energy was observed by optical absorption from 1.2 eV for the undoped samples to a 1.7-2.0 eV range for the doped films.

Keywords: Chemical bath; grain size; cell potential; nanoparticles; coordination complex; doping.

PACS: 71.20.Nr; 68.55.A; 64.70.kg

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. L. E. Brus, J. Chem. Phys. 80 (1984) 4403; N. Choundhury and B.K. Sharma, Thin Solid Films. 519 (2011) 2132.         [ Links ]

2. Z. Peng, Y. Jiang, Y. Song, C. Wang, and H. Zhang, Chem. Mater. 20 (2008) 3153; S. Chandramohan, A. Kanjilal, S. Sarangi, N. S. Majumder, R. Sathamoorthy and T. Som, Appl. Phys. A 99 (2010) 837.         [ Links ]

3. R. Reisfeld, C. K. Jorgensen (Eds.), vol. 85, Springer, (Berlin, 1996) p. 99. (b) C. Z. Zhang, W. C. Wei and Y. H. Xiao, Crystal Growth & Design 7 (2007) 580.         [ Links ]

4. P. K. Nair, O. Gomezdaza, M. T .S. Nair, Adv. Mater. Opt. Electron. 1 (1992) 139.         [ Links ]

5. P. K. Nair, and M. T. S. Nair, J. Phys. D: Appl. Phys. 23 (1990) 150; A. Yuchi, H. Wada and G. Nakagawa, Analy. Sci. 1 (1985) 19.         [ Links ]

6. S. B. Pawar, J. S. Shaikh, R. S. Devan, Y. R. Ma. D. Haranath, P. N. Bhosale and P. S. Patil. Appl. Surf. Sci. 258 (2011) 1869.         [ Links ]

7. T. Saraidarov, R. Reisfeld, A. Sashchiuk and E. Lifshitz, Physica E 37 (2007) 173.         [ Links ]

8. D. Yu, W. Zhaoyu Meng, J. Lu and Yitai Quian, J. Mater. Chem. 12 (2002) 403.         [ Links ]

9. S.-M. Lee, Y.-W. Jun, S.-N. Cho and J. Cheon, J. Am. Chem. Soc. 124 (2002) 11244.         [ Links ]

10. S. Xiong, B. Xi, D. Xu, C. Wang, X. Feng, H. Zhou, and Y. i Quian. J. Phys. Chem. 111 (2007) 16761.         [ Links ]

11. S. Thangavel, S. Ganesan, K. Saravanan, Thin Solid Films. 520 (2012) 5206.         [ Links ]

12. R. Gutiérrez Pérez et al., J. Mater. Engin. A 3 (2013) 1.         [ Links ]

13. R. Kumar, P. Kumar, R. Das, and S. Tiwari, Adv. Phys. Theo. Appl. 19 (2013) 101.         [ Links ]

14. A. J. Bethune, N.A.S Loud, In Standard Aqueous Potential and Temperature Coefficients at 25°C, C.C. (1969) Hampel, Skokie, II.         [ Links ]

15. O. Portillo Moreno et al., J. Electrochem. Sci. Soc. 153 (2006) 930.         [ Links ]

16. O. Zelaya Angel et al., J. Mater Sci. 1 (2011) 1.         [ Links ]

17. S. Kaci, A. Keffous, M. Trari, O. Fellahi, H. Menary, A. Manseri, and L. Guerbous, J. Luminesc. 130 (2010) 1849.         [ Links ]

18. R. K. Joshi, A. Kanjilal, H.K. Shegal, Appl. Surf. Sci. 221 (2004) 43.         [ Links ]

19. R. Kumar and R. Das, Inter. Conf. on Adv. in Eng. & Tech., (ICAET-2014) 7.         [ Links ]

20. W. P. Lim, H.Y. Low, and W.S. Chin, J. Phys. Chem. B 108 (2004) 13093.         [ Links ]

21. Y. Wang, A. Suna, W. Mahler and R. Kasowsky, J. Chem. Phys. 87 (1987) 7315.         [ Links ]

22. P. Prathap, N. Revathi, P.V. Subbaiah and K.T. Ramakrishna, J. Phys. Condens. Matter. 20 (2008) 35205.         [ Links ]

23. M. Gao, Y. Yang, B. Yang and J. Shen, J. Chem. Soc. Faraday Trans. 91 (1995) 4121.         [ Links ]

24. J.-H. Chen, C.-G. Chao, J.-C. Ou and T.-F. Liu, Appl. Surf. Sci. 601 (2007) 5142.         [ Links ]

25. R. Rossetti, R. Hull, J.M. Gibson and L. E. Brush, J. Chem. Phys. 83 (1985) 1406.         [ Links ]

26. S. Wang and S. Yang, Langmuir 16 (2000) 389.         [ Links ]

27. J. Zhang and X. Jiang, Appl. Phys. Lett. 92 (2008) 14108.         [ Links ]

28. W. Bolse, Mater. Sci. Eng. R 12 (1994) 53.         [ Links ]

29. K. Senthil, D. Mangalaraj, S. K. Narayandas, B. Hong, Y. Roh, C.S. Park and J. Yi, Semicond. Sci. Technol. 17 (2002) 97.         [ Links ]

30. Chahadin et al., Nanoscale Res, Lett. 6 (2011) 542.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons