SciELO - Scientific Electronic Library Online

 
vol.61 número4Contributions to the defocusing effect on pole figure measurements by X-ray diffractionSistema de microscopía de fuerza atómica basada en una unidad de lectura óptica digital y un escáner-zumbador índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.61 no.4 México jul./ago. 2015

 

Investigación

 

Optical and structural properties of CdS:Pb2+ nanocrystals

 

R. Gutiérreza,*, O. Portilloª, M. Chávezb, H. Juárezb, M. Paciob, L. Chaltelª, M. Zamoraª, M. Lazcanoª, E. Rubioc, and G. Hernandezª

 

ª Materials Science Laboratory, Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, P.O. Box 1067, Puebla, Pue., 72001 México. * Tel. (01 222) 2-29-55-00 Ext. 7519. e-mail: osporti@yahoo.mx

b CIDS-ICUAP, Universidad Autónoma de Puebla, Puebla, Pue., 72001 México.

c Centro Universitario de Vinculación y Transferencia Tecnológica, Universidad Autónoma de Puebla, Ciudad Universitaria, Colonia San Manuel, Puebla, Pue., 72001 México.

 

Received 8 April 2015.
Accepted 29 May 2015.

 

Abstract

The goal of this work is to study the effects of doping on structural, morphological and optical properties of CdS thin films as a function of Pb2+ concentration. Thus, nanoparticles were synthesized by chemical bath and a thickness decrease of ~575-200 nm range was observed. In Fourier-transform infrared spectroscopy, all the samples showed a sharp stretching mode observed at ~1384 cm-1 corresponding to the vibration mode of CO3-2. X-ray diffraction studies show that the size of crystallites is in the ~33-12 nm range. The peaks belonging to primary phase are identified at the 2θ = 26.5° and 2θ = 26.00°, corresponding to CdS and PbS respectively. Thus, a shift in maximum intensity peak from 2θ = 26.4° to 28.2° is observed. Likewise peaks at 2θ = 13.57°, 15.91° correspond to lead perchlorate thiourea. The optical, absorption, and transmission properties of the films were determined by UV-vis spectrophotometry, optical energy gap was found to range from 2.1 to 2.4 eV. Raman spectroscopy on doped films showed a shifting of these modes that can be attributed to strain, stress effects, defects, phonon confinement, and variation in phonon relaxation with grain size.

Keywords: Chemical bath; CdS; cell potential; nanoparticles; coordination complex; doping.

PACS: 71.20.Nr; 68.55.A; 64.70.kg

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. B. T. Wilhelm and J. R. Landry, RNASeq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods (San Diego, Calif.), 48 (2009) 249.         [ Links ] H. Kanasawa, S. Adachi, J. Appl. Phys. 83 (1998) 5997.         [ Links ]

2. N. Choundhury and B. K. Sharma, Thin Solid Films. 519 (2011) 2132.         [ Links ]

3. J. J. Valenzuela, B. R Ramírez G. A. Mendoza and L. M. Sotelo, Thin Solid Films.441 (2003) 104.         [ Links ]

4. S. Chandramohan, A. Kanjilal, S. Sarangi, N. S. Majumder, R. Sathamoorthy, and T. Som, Appl. Phys. A 99 (2010) 837.         [ Links ]

5. H. Khallaf, C. Guangyu, O. Lupan, L. Chow, S. Park, and A. Schulte, Appl. Surf. Sci. 255 (2009) 4129.         [ Links ]

6. H. M. Upadhyaya and S. Chandra, J. Mat. Sci. 29 (1994) 2734.         [ Links ]

7. C. Z Zhang, W. C. Wei, and Y. H. Xiao, Crystal Growth & Desing 7 (2007) 580.         [ Links ]

8. K. L. Narayanan, M. Yamaguchi, P. J. A. Dávila, M. R. Lozada, M. O. Portillo, and O. Zelaya á. Vacuum 81 (2007) 1430.         [ Links ]

9. L. G. Sillen, and A. E. Martell, Chem. Soc., London 17 (1964) 8.         [ Links ]

10. A. Yuchi, H. Wada, and G. Nakagawa, Analy. Sci.1 (1985) 19.         [ Links ]

11. J. A. Dean, Lange's Handbook of Chem. 13th ed. (New York: McGraw-Hill. 1987). p. 5.         [ Links ]

12. Q. Q. Liu, J. H. Shi, Z. Q. Li, D. W. Zhang, X. D. Li, Z. Sun, L.Y. Zhang, and S. M. Huang, Physica B. 405 (2010) 4360.         [ Links ]

13. M. Froment, and D. Lincot, Electrochem. Acta 40 (1995) 1293.         [ Links ]

14. M. R. Palomino, et al., Nanotech. 13 (2013) 1.         [ Links ]

15. M. O. Portillo, et al., Nanotechnology. 1 (2012) 1.         [ Links ]

16. Zhai, R. Wang, S. Xu, H. Wang, and H. Yan. Mat. Lett. 59 (2005) 1497.         [ Links ]

17. D. Fan, H. Wang, Y. Zhang, J. Cheng, B. Wong, and H. Yan, Mat. Chem. and Phys. 80 (2003) 44.         [ Links ]

18. C. D. Lokhande, et al., Thin Solid Films. 330 (1998) 70.         [ Links ]

19. C. A. Carrillo, et al., Mat. Lett. 12 (2014) 19.         [ Links ]

20. H. Moualkia, S. Hariech, and M. S. Ainda, Thin Solid Films. 518 (2009) 1259.         [ Links ]

21. X. Guo, Y. Deng,. B. Tu, and D. Zhao, Langmuir. (2010) 26 702.         [ Links ]

22. S. Liu, S. Xiong, K. Bao, L. Cao, and Y. Quian, J. Phys. Chem. C 113 (2009) 13002.         [ Links ]

23. Li. Chunguang, Y. Zhao, F. Li, Z. Shi, and S. Feng, Chem. Mater 22 (2010) 1901.         [ Links ]

24. Y. Yu, S. K. Zhang, and J. Sun, Molec. Struct. 1031 (2013) 194.         [ Links ]

25. Z. A. Abdolahzade, and F. E. Ghodsi, J. Luminescence. (2013) 141 121.         [ Links ]

26. K. Yamaguchi, T. T. Yoshida, and M. S. Hideki, J. Phys. Chem. B 102 (1998) 9677.         [ Links ]

27. G. Murugadoss, Superlattices and Microstructures, 52 (2012) 126.         [ Links ]

28. M. Guglielmi, A. Martucci, J. Fick, and G. Vitrant, J. Sol-Gel Sci. Technol. (1998) 229-240.         [ Links ]

29. S. Natalia, R. A. A. Kozhenikova, F. Hergert, and A. Magery, Thin Solid Films. 517 (2000) 2586        [ Links ]

30. J. A. Lange's, Handbook of Chemistry, (McGraw Hill Book Co., Beijing, 1999).         [ Links ]

31. B. R. Ortega and D. Lincot, J. Electrochem. Soc. 140 (1993) 3464.         [ Links ]

32. I. Broser, H. Maier, and H. Schult, J. Phys. Rev. 140 (1965) 2135.         [ Links ]

33. M. Grus, and A. Siroka, Physica. B 266 (1999) 139.         [ Links ]

34. M. O. Portillo et al., Electrochem. Sci. Soc. 153 (2006) 926.         [ Links ]

35. M. Esmaili, A. Habibi-Y, and J. Chin, Catal. 32 (2011) 933.         [ Links ]

36. C. S. Tiwary, R. Sarkar, P. Kumbhakar, and A. K. Mitra, Phys. Lett. A 372 (2008) 5825.         [ Links ]

37. M. Maleki, G. M. Sasani, S. Mirdamadi, and R. Ghasemzadeh, Phys. Quant. Electr. Optoelectr. 10 (2007) 30.         [ Links ]

38. R. K. Subba, B. Kumar, and J. Anil. Mat, Sci. Electron. 11 (2000) 269.         [ Links ]

39. I. S. Jamil, and R. N. Ahmad-B, J. Mater Res. Technol. 2 (2013) 221.         [ Links ]

40. P. P. Sahay, R. K. Nath, and S. Tewari, Cryst. Res. Technol. 42 (2007) 275.         [ Links ]

41. I. Nascu, C. V. Pop, I. E. Indrea, and I. Bratu, Thin Solid Films. 307 (1997) 240.         [ Links ]

42. S. Singhal, C. A. Kumar, and H. O. R. Gupta, Chandra. Nanoscale Res. Lett. 5 (2010) 323.         [ Links ]

43. A. Cortes, H. Gómez, R. E. Marotti, G. Riveros, and E. A. Dalchiele, Solar Ener. Mat, & Solar Cell. 82 (2004) 21.         [ Links ]

44. E. J. Pantoja, and X. Mathew, Solar Ener. Mat. & Solar Cell. 76 (2003) 313.         [ Links ]

45. K. S. Ramaiah, R. Pilkington, D. A. E. Hill, R. D. Tomlinson, and A. K. Bhatnagar, Mat. Chem. Phys. 68 (2001) 22.         [ Links ]

46. M. A. Barote, A. A. Yadav, L. P. Deshmukh, and E. U. Masum-dar, J. Non-Oxide Glass. 2 (2010) 151.         [ Links ]

47. H. Khallaf, G. Chai, L. C. O. Lupan S. Park, and A. Schulte, J. Phys. D: Appl. Phys. 41 (2008) 185304.         [ Links ]

48. H. Kanazawa, and S. Adachi, J. Appl. Phys. 83 (11) (1998) 5997.         [ Links ]

49. D. Routkevitch, T. Bigioni, M. Mokovits, and J. Ming Xu, J. Phys. Chem. 100 (2004) 14037.         [ Links ]

50. N. E. S. Freitas, et al., J. Raman Spectra. 44 (2013) 1022.         [ Links ]

51. G. D. Smith, S. Firth, R. J. H. Clark, and M. Cardona, J. Appl. Phys., 92 (2002) 4375.         [ Links ]

52. T. D. Krauss, and F. W. Wise, Phys. Rev. 55 (1997) 9860.         [ Links ]

53. D. Routkevitch, T. L. Halslett, L. Ryan, T. Bigioni, C. Douketis, and M. Moskovits, Chem. Phys. 210 (1996) 343.         [ Links ]

54. N. Badera, et al., Solar Ener. Mat. & Solar Cell. 92 (2008) 1646.         [ Links ]

55. T. D. Krauss, F. D. Wise, and D. B Taner, Phys. Rev. Lett. 76 (1996) 1376.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons