SciELO - Scientific Electronic Library Online

 
vol.61 issue3Tunneling of polymer particlesComplete sets of circular, elliptic and bipolar harmonic vortices on a plane author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.61 n.3 México May./Jun. 2015

 

Investigación

 

Hamiltonian dynamics for Proca's theories in five dimensions with a compact dimension

 

A. Escalantea and C.L. Pando Lambruschinia, and P. Cavildob

 

a Instituto de Física Luis Rivera Terrazas, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48 72570 Puebla. Pue., México. e-mail: aescalan@ifuap.buap.mx

b Instituto de Física Luis Rivera Terrazas, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48 72570 Puebla. Pue., México, Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue., México.

 

Received 5 September 2014;
accepted 19 February 2015

 

Abstract

The canonical analysis of Proca's theory in five dimensions with a compact dimension is performed. From the Proca five dimensional action, we perform the compactification process on a S1/Z2 orbifold, then, we analyze the four dimensional effective action that emerges from the compactification process. We report the extended action, the extended Hamiltonian and we carry out the counting of physical degrees of freedom of the theory. We show that the theory with the compact dimension continues laking of first class constraints. In fact, the final theory is not a gauge theory and describes the propagation of a massive vector field plus a tower of massive KK-excitations and one massive scalar field. Finally, we develop the analysis of a 5D BF-like theory with a Proca mass term, we perform the compactification process on a S1/Z2 orbifold and we find all the constraints of the effective theory, we also carry out the counting of physical degrees of freedom; with these results, we show that the theory is not topological but reducible in the first class constraints.

Keywords: Proca theory; extra dimensions; Hamiltonian dynamics.

 

PACS: 98.80.-k; 98.80.Cq

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Th. Kaluza, Sitzungober. Preuss. Akad. Wiss. Berlin, (1921) 966;         [ Links ] O. Klein, Z.Phys. 37 895 (1926).         [ Links ]

2. M. Gogberashvili, A. Herrera Aguilar, D. Malagón Morejón and R.R. Mora Luna, Phys. Lett B, 725 (2013) 208-211.         [ Links ]

3. M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory (Cambridge University Press, Cambridge, (1986));         [ Links ] J. Polchinski, String Theory (Cambridge University Press, Cambridge, (1998));         [ Links ] S.T. Yau (ed.), Mathematical Aspects of String Theory (World Scientific, Singapore, 17 (1987)).         [ Links ]

4. A. Pérez-Lorenzana, J. Phys. Conf. Ser. 18 (2005) 224.         [ Links ]

5. A. Muck, A. Pilaftsis and R. Ruckl, Phys. Rev. D 65 (2002) 085037.         [ Links ]

6. I. Antoniadis, Phys. Lett. B 246 (1990) 377.         [ Links ]

7. J.D. Lykken, Phys. Rev. D 54 (1996) 3693.         [ Links ]

8. K.R. Dienes, E. Dudas, and T. Gherghetta, Phys. Lett. B 436 (1998) 55;         [ Links ] Nucl. Phys. B 537 (1999) 47.         [ Links ]

9. L. Nilse, AIP Conf. Proc. 903 (2007) 411-414.         [ Links ]

10. A. Escalante and M. Zárate, A pure Dirac's analysis for a four dimensional BF-like theory with a compact dimension, (submitted to Reports on Mathematical Physics, 2014).

11. N. Banerjee, R. Banerjee, Mod. Phys. Lett. A 11 (1996) 19191928.         [ Links ]

12. S. Tae Hong, Y. Wan Kim, Y. Jai Park and K.D. Rothe, Mod. Phys. Lett. A 17 (2002) 435-452.         [ Links ]

13. A. Escalante, Int. J. Theor. Int J Theor Phys, 48 2486-2498 (2009).         [ Links ]

14. A. Escalante and L. Carbajal, Ann. Phys. 326 (2011) 323-339.         [ Links ]

15. A. Escalante and I. Ruvalcaba García, Int. J. Geom. Methods Mod. Phys. 9 (2012) 1250053.         [ Links ]

16. M. Henneaux and C. Teitelboim, Quantization of gauge systems, (Princeton University Press, Princeton, 1992).         [ Links ]

17. H. Novales-Sanchez and J.J. Toscano, Phys. Rev. D, 82 (2010) 116012.         [ Links ]

18. A. Escalante, J. Berra, Int. J. Pure Appl. Math. 79 (2012) 405-423.         [ Links ]

19. J. Govaerts, Topological quantum field theory and pure Yang Mills dynamics, Proceedings of the third International Workshop on Contemporary Problems in Mathematical Physics (COPROMAPH3 ), Cotonou (Republic of Benin), (2003);         [ Links ] B. Bertrand and J. Govaerts, J. Phys. A 40 F979-F986 (2007);         [ Links ] B. Bertrand and J. Govaerts, J. Phys. A 40 (2007) 9609-9634.         [ Links ]

20. E.S. Fradkin and G.A. Vilkovisky, Phys. Lett. B 55 (1975) 224 M.         [ Links ]

21. M. Henneaux, Phys. Rep. C 126 (1985) 1.         [ Links ]

22. M. Martellini and M. Zeni, Phys. Lett. B 401 (1997) 62.         [ Links ]

23. L. Freidel and A. Starodubtsev, Quantum gravityin terms of topological observables, arXiv: hep-th/0501191.         [ Links ]

24. A. Escalante and M. Zárate, Ann. Phys. 353 (2015) 163-178.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License