SciELO - Scientific Electronic Library Online

 
vol.61 issue2Optical, structural and morphological properties of CdS-CdCO3 filmsEstudio computacional de las energías de interacción de dímeros cis-trans y trans-trans del ácido fórmico author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.61 n.2 México Mar./Apr. 2015

 

Investigación

 

Atomic displacements effects on the electronic properties of Bi2Sr2Ca2Cu3O10

 

J.A. Camargo-Martíneza, D. Espitiab and R. Baquerob

 

a Grupo de Investigación en Ciencias Básicas, Aplicación e Innovación - CIBAIN, Fundación Universitaria Internacional del Trópico Americano - Unitrópico, Yopal - Colombia, e-mail: jcamargo@unitropico.edu.co.

b Departamento de Física, CINVESTAV-IPN, Av. IPN 2508, 07360 México.

 

Received 26 May 2014;
accepted 30 January 2015

 

Abstract

The displacements effects of the oxygen atom associated to the Sr-plane (O3) in the electronic properties of Bi2Sr2Ca2Cu3O10 (Bi-2223), have been investigated using density functional theory. We determined intervals of the O3 atomic positions for which the band structure calculations show that the Bi-O bands, around the high symmetry point M‾ in the irreducible Brillouin zone, emerge towards higher energies avoiding its contribution at Fermi level, as experimentally has been reported. This procedure does not introduce foreign doping elements into the calculation. Our calculations present a good agreement with the angle-resolved photoemission spectroscopy (ARPES) and nuclear magnetic resonance (NMR) experiments. The two options found differ in character (metallic or nonmetallic) of the Bi-O plane. There are not any experiments, to the best of our knowledge, which determine this character for Bi-2223.

Keywords: Bi-2223; electronic structure; band structure; Fermi surface.

 

PACS: 74.72.-h; 71.20.-b; 71.18.+y; 73.20.At

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

6. Acknowledgments

The authors acknowledge to the GENERAL COORDINATION OF INFORMATION AND COMMUNICATIONS TECHNOLOGIES (CGSTIC) at CINVESTAV for providing HPC resources on the Hybrid Cluster Supercomputer Xiuhcoatl and to the Instituto de Ciencia y Tecnología del Distrito Federal under the contract ICyTDF/268/2011, that have contributed to the research results reported within this paper. D.E. acknowledges the hospitality of the Department of Physics at Cinvestav.

 

References

1. J. L. Tallon et al., Nature 333 (1988) 153.         [ Links ]

2. J. M. Tarascon et al., Phys. Rev. B 38 (1988) 8885.         [ Links ]

3. H. Kitaguchi and H. Kumakura MRS Bulletin: Advances in Bi-BasedHigh-Tc Superconducting Tapes and Wires 26 (2001) 121.         [ Links ]

4. T.J. Arndt, A. Aubele, H. Krauth, M. Munz, B. Sailer, and A. Szulczyk, IEEE Transactions on Applied Superconductivity 13 (2003) 3030.         [ Links ]

5. W. Hassenzahl et al., Electric power applications of superconductivity. Proceedings of the IEEE. Special Issue on Applications of Superconductivity 92 (2004) 1655.         [ Links ]

6. E. Díaz-Valdés, G.S. Contreras-Puente, N. Campos-Rivera, C. Falcony-Guajardo and R. Baquero, arXiv:1101.0277 [cond-mat.supr-con].

7. Y. Zhao et al., Phys. Rev. B 51 (1995) 3134.         [ Links ]

8. J. A. Camargo-Martínez, Diego Espitia and R. Baquero, Rev. Mex. Fis. 60 (2014) 39.         [ Links ]

9. S. Massidda, J. Yu and A. J. Freeman, Phys. C 152 (1988) 251.         [ Links ]

10. H. Krakauer and W.E. Pickett, Phys. Rev. Lett. 60 (1988) 1665.         [ Links ]

11. D.J. Singh and W.E. Pickett, Phys. Rev. B51 (1995) 3128.         [ Links ]

12. A. Damascelli et al., Rev. Mod. Phys. 75 (2003) 473.         [ Links ]

13. S. Ideta et al., Phys. Rev. Lett. 104 (2010) 227001.         [ Links ]

14. H. Matsui et al., Phys. Rev. B 67 (2003) 060501.         [ Links ]

15. D.L. Feng et al., Phys. Rev. Lett. 88 (2002) 107001.         [ Links ]

16. Hsin Lin et al., Phys. Rev. Lett. 96 (2006) 097001.         [ Links ]

17. H. Lin, Topics in electronic structure and spectroscopy of cuprates (2008). Physics Dissertations. Paper 14. http://hdl.handle.net/2047/d10016363.

18. V. Bellini et al., Phys. Rev. Lett. 69 (2004) 184508.         [ Links ]

19. F. Herman et al., Phys. Rev. B 38 (1988) 204.         [ Links ]

20. O.K. Andersen, Phys. Rev. B 12 (1975) 3060.         [ Links ]

21. P. Blaha, K. Schwars, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K:Full Potential-Linearized Augmented Plane waves and Local Orbital Programs for Calculating Crystal Properties, edited by K. Schwars, Vienna University of Technology, Austria, (2001).         [ Links ]

22 . R. Kouba, C. Ambrosch-Draxl, and B. Zangger, Phys. Rev. B 60 (1999) 9321.         [ Links ]

23. X. Zhu, S. Feng. J. Zhang, G. Lu, K. Chen, K. Wu, and Z. Gan, Modern Phys. Lett. B3 (1989) 707.         [ Links ]

24. M. Mori, T. Tohyama, and S. Maekawa, Phys. Rev. B 66 (2002) 064502.         [ Links ]

25. A. Trokiner et al., Phys. Rev. B 44 (1991) 2426.         [ Links ]

26. H. Kotegawa et al., J. Phys. Chem. Solids 62 (2001) 171.         [ Links ]

27. M. Tanaka et al., Nature 339 (1989) 691.         [ Links ]

28. M. Tanaka et al., J. Vac. Sci. Technol. A 8 (1990) 475.         [ Links ]

29. S.M. Butorin et al., Phys. Rev. B 51, 11915 (1995).         [ Links ]

30. S. Sugita et al., Phys. Rev. B 62 (2000) 8715.         [ Links ]

31. K. Asokan et al., J. Electron Spectrosc. 114 (2001) 837.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License