SciELO - Scientific Electronic Library Online

 
vol.61 issue1Stable soliton-like train pulses in an active fiber laser system author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.61 n.1 México Jan./Feb. 2015

 

Investigación

 

Mesoscopic simulation of Brownian particles confined in harmonic traps and sheared fluids

 

J. Fernández and H. Híjar

 

Grupo de Sistemas Inteligentes, Facultad de Ingeniería, Universidad La Salle, Benjamín Franklin 47, 06140, D.F., México, e-mail: jaimefernandez@lasallistas.org.mx; humberto.hijar@lasallistas.org.mx

 

Received 13 August 2014;
accepted 24 October 2014

 

Abstract

We consider the motion of a Brownian particle bound by a harmonic force in a thermal bath driven from equilibrium by a uniform shear imposed externally. We extend the classical theory of Brownian motion to calculate the probability distribution function for finding the Brownian particle in a phase-space volume element when it is in the presence of the external shear. We find the explicit form of the reduced distribution for velocities in the stationary limit and show that it becomes anisotropic by extending itself over the direction of the imposed shear. We also consider the effects of the imposed shear on the time correlation functions of the Brownian particle and show that these quantities acquire contributions depending exclusively on the nonequilibrium state of the solvent, which render them non symmetric and time-irreversible. In order to verify these conclusions we develop a hybrid mesoscopic simulation technique based on Molecular Dynamics and Multi-particle Collision Dynamics. We observe a very good agreement between the predictions of the model and the results obtained independently from the simulation method, thus suggesting that the latter could be used as a complement to current experimental procedures.

Keywords: Brownian motion; nonequilibrium statistical mechanics; molecular dynamics; multi-particle collision dynamics.

 

PACS: 05.70.Ln; 05.40.Jc; 36.20.Ey

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

H. Híjar thanks Universidad La Salle for financial support under grant I-062/12.

 

References

1. J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes (Springer, New York, 1987).         [ Links ]

2. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1984).         [ Links ]

3. I. Santamaría-Holek, R. Lugo-Frías, R. F. Rodríguez and A. Gadomski, in Thermodynamics-Physical Chemistry of Aqueous Systems, edited by J. C. Moreno Pirajan (InTech, 2011).         [ Links ]

4. M. C. Marchetti and J. W. Dufty, J. Stat. Phys. 32 (1983) 255.         [ Links ]

5. R. F. Rodríguez, E. Salinas-Rodríguez and J. W. Dufty, J. Stat. Phys. 32 (1983) 279.         [ Links ]

6. G. Subramanian and J. F. Brady, Physica A 334 (2004) 343.         [ Links ]

7. Y. Drossinos and M. W. Reeks, Phys. Rev. E71 (2005) 031113.         [ Links ]

8. J. M. Rubí and P. Mazur, Physica A 250 (1994) 253.         [ Links ]

9. J. M. Rubí and A. Perez-Madrid, Physica A 264 (1999) 492.         [ Links ]

10. I. Santamaría-Holek, D. Reguera and J. M. Rubí, Phys. Rev. E 61 (2001)051106.         [ Links ]

11. D. Reguera, J. M. Rubí and J. M. G. Vilar, J. Chem. Phys. B 109 (2005)21502.         [ Links ]

12. I. Santamaría-Holek, J. M. Rubí and A. Pérez-Madrid, New J. Phys. 7 (2005) 35.         [ Links ]

13. V. Breedveld, D. van den Ende, A. Tripathi and A. Acrivos J. Fluid Mech. 375 (1998) 297.         [ Links ]

14. D. J. Pine, J. P. Gollub, J. F. Brady and A. M. Leshansky, Nature 438 (2005) 997.         [ Links ]

15. J. S. Guasto, A. S. Ross and J. P. Gollub, Phys. Rev. E81 (2007) 061401.         [ Links ]

16. H. Orihara and Y. Takikawa, Phys. Rev. E 84 (2011)061120.         [ Links ]

17. S. Sarman, D. J. Evans and A. Baranyai, Phys. Rev. A 46 (1992) 893.         [ Links ]

18. N. T. N. Phung, J. F. Brady and G. Bossis, J. Fluid Mech. 313 (1996) 181.         [ Links ]

19. D. R. Foss and J. F. Brady, J. Fluid Mech. 407 (2000) 167.         [ Links ]

20. C. Van den Broeck, J. M. Sancho and M. San Miguel, Physica A 116 (1982) 448.         [ Links ]

21. A. Ziehl, J. Bammert, L. Holzer, C. Wagner and W. Zimmermann Phys. Rev. Lett. 103 (2009) 230602.         [ Links ]

22. L. Holzer, J. Bammert, R. Rzehak and W. Zimmermann Phys. Rev. E 81 (2010) 041124.         [ Links ]

23. H. Híjar, J. Chem. Phys. 139 (2013) 234903.         [ Links ]

24. D. Frenkel and B. Smith, Understanding Molecular Simulations: from Algorithms to Applications (Academic Press, San Diego, 2002).         [ Links ]

25. A. Malevanets and R. Kapral, J. Chem. Phys. 110 (1999) 8605.         [ Links ]

26. A. Malevanets and R. Kapral, J. Chem. Phys. 112 (2000) 7260.         [ Links ]

27. R. Kapral, Adv. Chem. Phys. 140 (2008) 89.         [ Links ]

28. J. T. Padding and A. A. Louis, Phys. Rev. E 74 (2006) 031402.         [ Links ]

29. M. Belushkin, R. G. Winkler and G. Foffi, J. Phys. Chem. B 115 (2011) 14263.         [ Links ]

30. A. Nikobashman, C. N. Likos and G. Kahl, Soft Matter 9 (2013) 2603.         [ Links ]

31. H. Faxén, Arkiv för matematik, astr. och fysik Bd 18 (1924).         [ Links ]

32. P. Mazur and D. Bedeaux, Physica 76 (1974) 235.         [ Links ]

33. S. Chandrasekhar, Rev. Mod. Phys. 15 (1943) 1.         [ Links ]

34. R. F. Fox, Phys. Rep. 48 (1978) 180.         [ Links ]

35. J. K. G. Dhont, An introduction to dynamics of Colloids (Elsevier, Amsterdam, 2003).         [ Links ]

36. H. Híjar, (2014) in progress.

37. J. P. Hansen and I. R. McDonald, Theory of simple liquids, 2nd edition (Academic Press, London, 1986).         [ Links ]

38. G. Gompper, T. Ihle, D.M. Kroll and R.G. Winkler, Adv. Polym. Sci. 221 (2009) 1.         [ Links ]

39. J. M. Yeomans, Physica A 369 (2006) 159.         [ Links ]

40. T. Ihle and D. M. Kroll, Phys. Rev. E 63 (2001) 020201.         [ Links ]

41. T. Ihle and D. M. Kroll, Phys. Rev. E 67 (2003) 066706.         [ Links ]

42. A. W. Lees and S. F. Edwards, J. Phys. C5 (1972) 1921.         [ Links ]

43. N. Kikuchi, C. M. Pooley, J. F. Ryder and J. M. Yeomans, J. Chem. Phys. 119 (2003) 6388.         [ Links ]

44. E. Allahyarov and G. Gompper, Phys. Rev. E66 (2002) 036702.         [ Links ]

45. M. Hecht, J. Harting, T. Ihle and H. J. Hermann, Phys. Rev. E 72 (2005)011408.         [ Links ]

46. H. Híjar and G. Sutmann, Phys. Rev. E 83 (2011) 046708.         [ Links ]

47. C. C. Huang, G. Gompper and R. G. Winkler, Phys. Rev. E 86 (2012) 056711.         [ Links ]

48. C. M. Pooley and J. M. Yeomans, J. Phys. Chem. B109 (2005) 6505.         [ Links ]

49. E. Tuzel, M. Strauss, T. Ihle and D. M. Kroll, Phys. Rev. E 68 (2003) 036701.         [ Links ]

50. B. J. Alder and T. E. Wainwright, Phys. Rev. Lett. 18 (1967) 988.         [ Links ]

51. B. J. Alder and T. E. Wainwright, Phys. Rev. A 1 (1970) 18.         [ Links ]

52. R.Zwanzig and M. Bixon J. Fluid. Mech. 69 (1975) 21.         [ Links ]

53. H. J. H. Clercx and P. P. J. M. Schram, Phys. Rev. A 46 (1992) 1942.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License