SciELO - Scientific Electronic Library Online

 
vol.60 número6Desarrollo de una cama de pruebas experimental para sistemas IR-UWBoF-IM/DD basándose en el uso de la plataforma de simulación VPIphotonics índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.60 no.6 México nov./dic. 2014

 

Instrumentación

 

Interdigitated capacitance sensors in the mm scale with sub-femtoFarad resolution suitable for monitoring processes in liquid films

 

A. Guadarrama-Santanaa,*, A. García-Valenzuelaª, F. Pérez-Jiménezª and L. Polo-Paradab

 

ª Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apartado Postal 70-186, Distrito Federal 04510, México, * Phone: +52-55-56228602 ext. 1116, e-mail: asur.guadarrama@ccadet.unam.mx.

b University of Missouri Department of Medical Pharmacology and Physiology, Medical School, Dalton Cardiovascular Research Center 134 Research Park Drive Rd. Columbia, MO 65211 USA, e-mail: poloparadal@missouri.edu.

 

Received 28 April 2014.
Accepted 19 September 2014.

 

Abstract

We propose and analyze a high resolution capacitive sensor appropriate for monitoring physical or chemical processes in liquid films. The proposed sensor is based on a planar interdigitated capacitor with planar electrodes of dimensions in the milimeter scale. The electric field between electrodes extend above the plane of the electrodes up to a few milimeters and thus permits placing a dielectric container with a liquid film on top and still be sensitive to changes in the liquid film. First, we present numerical calculations of the capacitance of an interdigitated sensor as a function of the thickness and dielectric constant of a film placed on top of it using a finite element method. Then, we describe a suitable electronic system to sense with very high-resolution capacitance variations of the sensor by measuring the phase lag and amplitude change of a sinusoidal current signal passing through it. This is accomplished by subtracting a stable sinusoidal current of the same frequency going through a reference device. Initially the system is balanced by adjusting the reference current to cancel out the net output current. In this way, we compensate parasitic capacitances due to electronics, wiring and system hardware as well. When the capacitance of the sensor element varies the system gets unbalanced and a net current appears. The resulting current is measured with a locking-amplifier. To illustrate the sensitivity and resolution achieved by the sensing system, we present results of monitoring the capacitance of the sensor during the evaporation of liquid solvent films and discuss the time-evolution of the registered signals. The floor noise throughout the measurements was in the order of 50 atto-Farads while the signal varied in the range of several femto-Farads.

Keywords: Capacitance; interdigitated; electrodes; dielectric; solvent; evaporation.

 

PACS: 84.37.+q; 77.22.-d; 64.70.F-; 07.07.Df

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. P. Wang, Quingjung Liu editors, Engineering in Medicine & Biology, (2010) Artech House, ISBN-13: 978-1-59693-439-9.         [ Links ]

2. Jun Wam Kim, "Development of Interdigitated Capacitor Sensor for Direct and Wireless Measurements of the Dielectrics Properties of Liquids", (PhD thesis The University of Texas at Austin, December 2008).         [ Links ]

3. V. Mamishev, S. R. Kishore, F. Yang, Y. Du, and M. Zahn, Proceedings of the IEEE 92 (2004) 808-845.         [ Links ]

4. P. Van Gerwen et al., Sensors and Actuators B 49 (1998) 73-80.         [ Links ]

5. L. Montelius, J. Tegenfeldt and T. Ling, J. Vac. Sci. Technol. A 13 (1995) 1755-1760.         [ Links ]

6. P. Jacobs et al., Impedimetric detection of nucleic acid hybrids (Proceedings of the Second International Conference on Microreaction Technology, New Orleans, LA, March, 1998) pp. 8-12.         [ Links ]

7. N. F. Shepard, D. R. Day, H. L. Lee and S. D. Senturia, Sensors and Actuators 2 (1982) 263-274.         [ Links ]

8. M. C. Zaretsky, L. Mouayad, and J. R. Melcher, IEEE Transactions on Electrical Insulation, 23 (1988).         [ Links ]

9. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand and H. Baltes, Nature 414 (2001) 293-296.         [ Links ]

10. R. Casalini, M. Kilitziraki, D. Wood and M. C. Petty, Sensors and Actuators B 56 (1999) 37-44.         [ Links ]

11. F. Starzky, Archives of Materials Science and Engineering, 34 (2008)31-34.         [ Links ]

12. I. N. Court, IEEE Trans. Microwave Theory Tech. no. MTT-17, (1969) 968-986        [ Links ]

13. G. D. Alley, IEEE Trans. Microwave Theory Tech. MTT-18, (1970) 1028-1033.         [ Links ]

14. R. K. Hoffman, Handbook of Microwave integrated circuits, (Artech, Norwell, MA, 1987).         [ Links ]

15. N. Delmonte, B. E. Watts, G. Chiorboli, P. Cova, and R. Menozzi, Microelectronics Reliability 47 (2007) 682-685.         [ Links ]

16. V. Mamishev, Interdigital dielectrometry sensor design and parameter estimation algorithms for non-destructive materials evaluation. (Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1999).         [ Links ]

17. Kishore Sundara-Rajan, Alexander V. Mamishev, and Markus Zahn, Fringing Electric and Magnetic Field Sensors Encyclopedia of Sensors, X (2006) 1-12.         [ Links ]

18. B.V.N. Nagavarama, Hemant K.S. Yadav, A. Ayaz, L.S. Vasudha, and H.G. Shivakumar, Different techniques for preparation of polymeric nanoparticles- a review, Asian Journal of Pharmaceutical and Clinical Research, vol 5, suppl. 3, (2012).         [ Links ]

19. G. Brian Prevo and O. D. Velev, "Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions, Langmuir 20 (2004).         [ Links ]

20. Xiaohui Hu and Wuqiang, Sensor Review, 301 (2010) 24-39.         [ Links ]

21. L. Alfredo Ramajo, D. Enrique Ramajo, M. Marta Reboredo, Diego Hernan Santiago, Miriam Susana Castro, Materials Research, 11 (2008) 471-476.         [ Links ]

22. A. García-Valenzuela and A. Guadarrama-Santana, Am. J. Phys. 78 (2010) 1376-1378.         [ Links ]

23. H. A. Majid, N. Razzali, M. S. Sulaiman, and A. K. A'ain, A capacitive Sensor Interface Circuit Based on Phase Differential Method, World Academy of Science, Engineering and Technology 55 (2009).         [ Links ]

24. D. T. Lee, J. P. Pelz and Bharat Bhushan, Review of scientific Instruments 73 (2002) 3525-3533.         [ Links ]

25. A. Guadarrama-Santana and A. García Valenzuela, Review of Scientific Instruments 80 (2009) 106101.         [ Links ]

26. A. Guadarrama-Santana and A. García Valenzuela, Rev. Mex. Fis. 55 (2009) 477-485.         [ Links ]

27. Liliane Masschelein - Kleiner, Los Solventes (2004). ISBN: 956-244-166-0.         [ Links ]

28. G. D. Verros and M. A. Malamataris, Ind. Eng. Chem. Res. 38 (1999) 3572-3580.         [ Links ]

29. Peiming Wang, Andrzej Aderko, Fluid Phase Equilibria 186 (2001) 103-122.         [ Links ]

30. Niall J. O'reilly and Edmond Magner, Langmuir, 21 (2005) 1009-1014. http://lounge.ssradiouk.com/listen.plsonstant

31. L. Goncalves Dias Mendoca, Interdigitated capacitive sensor to verify the quality of ethanol automotive fuel ABCM Symposium Series in Mechatronics 3 (2008) 580-585.         [ Links ]

32. D. Schlicker, I. Shay, A. Washabaugh, N. Goldfine and B. Givot, Capacitive sensing dielectometers for noncontact characterization of adhesives and epoxies, (SPE ANTEC, May 2002).

33. K. S. Patel, P. A. Kohl and S. A. Bidstrup Allen, Journal of Polymer Science; Part B Polymer Physics 38 (2000) 1634-1644.

34. Zikang Pan, P. J. Hesketh and G. J. Maclay, Journal of Vacumm Science & Technology A 11 (1993) 1396.

35. U. Felderhof, G. W. Ford, E. D. G. Cohen, Journal of Statistical Physics 33 (1983).

36. S. Sivasubramanian, A. Widom, Y. N. Srivastava, Physica A 345 (2005) 356-366.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons