SciELO - Scientific Electronic Library Online

 
vol.60 número6Monte Carlo studies of critical phenomena in mixed spin-3/2 and spin-5/2 Ising model on square latticeDFT study of interaction between a hydrogen molecule and AgY-zeolite índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de física

versão impressa ISSN 0035-001X

Rev. mex. fis. vol.60 no.6 México Nov./Dez. 2014

 

Investigación

 

Polarimetric parameters associated to commercial optical fibers

 

O. J. Velarde-Escobarª, K. M. Salas-Alcántarab, R. Espinosa-Lunab,*, G. Atondo-Rubioª, and I. Torres-Gómezc

 

a GIPYS, Posgrado en Física, Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, 80010 Culiacán, Sinaloa, México, e-mail: osvel@uas.edu.mx; gatondo@uas.edu.mx

b GIPYS, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Colonia Lomas del Campestre, 37150 León, Guanajuato, México, e-mail: alrak@cio.mx; * reluna@cio.mx

c Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Colonia Lomas del Campestre, 37150 León, Guanajuato, México, e-mail: itorres@cio.mx

 

Received 20 May 2014.
Accepted 11 September 2014.

 

Abstract

The most important polarimetric parameters are determined for six different types of commercially available optical fibers, at 1550 nm of transmission wavelength. The diattenuation, polarizance, retardance, polarization dependent loss (PDL), among other conventional polarimetric parameters, are determined from the Mueller matrix associated to 1m length of each fiber studied here. An improvement to the data analysis method, reported recently by our group, is presented. Results obtained show the fibers can be used not only as static elements, but also as versatile optical devices, depending on the incident polarization state employed.

Keywords: Polarization in optical fibers; birefringence in optical fiber; analysis of polarized light.

 

Resumen

Se determinan los parámetros polarimétricos más importantes para seis distintos tipos de fibras ópticas accesibles comercialmente, a una longitud de onda de transmisión de 1550 nm. La diatenuación, polarizancia, retardancia, pérdidas dependientes de la polarización (PDL), entre otros parámetros polarimétricos convencionales, se obtienen mediante las matrices de Mueller asociadas a 1 m de longitud de cada fibra estudiada aquí. Una mejora al método de análisis de datos, reportado recientemente por nuestro grupo, es presentada. Los resultados obtenidos muestran que las fibras no solo pueden utilizarse como elementos ópticos estáticos, sino como dispositivos versátiles, dependiendo del estado de polarización incidente.

Descriptores: Polarización en fibras ópticas; birrefringencia en fibras ópticas; análisis de luz polarizada.

 

PACS: 42.81.Gs; 78.20.Fm

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

O. J. Velarde-Escobar (16821) and K. M. Salas-Alcántara (241632) express their gratitude to CONACYT (México) for the scholarships received through their doctoral studies. This work has been done with the financial support of CONACYT México (project 100361).

 

References

1. A. Ghatak, K. Thyagarajan, An Introduction To Fiber Optics, (Cambridge University Press, New York 1998).         [ Links ]

2. B. Culshaw and J. Dakin, Eds, Optical Fiber Sensors: Systems and Applications, Vol. II, (Artech House 1989).         [ Links ]

3. A. Mendez, Specialty Optical Fibers in Biomedical Applications: Needs & Applications, in Workshop on Specialty Optical Fibers and their Applications, (Optical Society of America 2013).         [ Links ]

4. Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. Wang, Opt. Lett. 31 (2006) 1785-1787.         [ Links ]

5. E. Collett, Polarized Light in fiber Optics, The PolaWave Group (2003).         [ Links ]

6. X. Wang, P. Moraw, D. R. Reilly, J. B. Altepeter, and G. S. Kanter, J. Lightwave Tech. 31 (2013) 707-714.         [ Links ]

7. K. M. Salas-Alcántara, R. Espinosa-Luna, and I. Torres-Gómez, Opt. Eng. 51 (2012) 085005.         [ Links ]

8. K. M. Salas-Alcántara, R. Espinosa-Luna, I. Torres-Gómez, and Y. Barmenkov, Appl. Opt. 53 (2014) 269-277.         [ Links ]

9. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, J. Biomed. Opt 13 (2008) 044036.         [ Links ]

10. T. A. Eftimov, W. J. Bock, P. Mikulic, and J. Chen, J. Lightwave Technol. 27 (2009) 3759-3764.         [ Links ]

11. D. Godstein, Polarized Light, 2nd Ed., (Marcel Decker 2003).         [ Links ]

12. S.Y. Lu and R. A. Chipman, J. Opt. Soc. Am. A 13 (2006) 1106-1113.         [ Links ]

13. J. J. Gil and E. Bernabeu, Opt. Acta 32 (1985) 259-261.         [ Links ]

14. R. Espinosa-Luna and E. Bernabeu, Opt. Commun. 277 (2007) 256-258.         [ Links ]

15. R. Espinosa-Luna, G. Atondo-Rubio, S. Hinojosa-Ruiz, Optik 121 (2010) 1058-1068.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons