SciELO - Scientific Electronic Library Online

 
vol.60 número4Mapping of solutions of the Hamilton-Jacobi equation by an arbitrary canonical transformationInterfacial properties of inhomogeneous fluids for a smooth profile índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.60 no.4 México jul./ago. 2014

 

Research

 

Indoor air quality analysis based on the ventilation effectiveness for CO2 contaminant removal in ventilated cavities

 

J. Serrano-Arellanoa*, M. Gijón-Riverab, J.M. Riesco-Ávilaa, J. Xamánc, and G. Álvarezc

 

a Departamento de Ingeniería Mecánica, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago Km 3.5+1.8. Comunidad de Palo Blanco, Salamanca, Gto. C.P. 36885, México.

b Tecnológico de Monterrey Campus Puebla, Vía Atlixcáyotl 2301, Reserva Territorial Atlixcáyotl, Puebla, Puebla CP 72453, México.

c Centro Nacional de Investigación y Desarrollo Tecnológico, CENIDET-DGEST-SEP, Prol. Av. Palmira S/N. Col. Palmira. Cuernavaca, Morelos C.P. 62490, México.

 

Received 3 December 2013.
accepted 4 June 2014.

 

Abstract

A theoretical study to determine an optimal configuration for removal a CO2 contaminant from inside a room is presented. The geometry considered was a 2D ventilated cavity in turbulent flow regime and solving the governing equations of mass, momentum and chemical species by the finite volume method. The interval of Reynolds number under study was 0 ≤ Re ≤ 2.5 X 104. The air inlet gap is located on the lower side of vertical right wall of the cavity. Three configurations of the cavity varying the air outlet gap on vertical left wall were analysed: in the upper side (case A), in the middle side (case B), and in the lower side (case C). From the results, case A removed the most amount of contaminant from inside room for a Re = 5 x 103, which had an effect on energy savings. The lower levels of contaminant for higher Reynolds numbers were obtained for the case B. The case C was the less desirable for contaminant removal purposes.

Keywords: Ventilation; indoor air quality; forced convection; turbulent flow; CO2 contaminant.

 

PACS: 47.11.Df; 47.27.E-

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. M.M. Monroy, Calidad ambiental en la edificación (Manuales ambientales CARO, 2005). pp. 113-125.         [ Links ]

2. ASHRAE Standard 62-2007, Ventilation for acceptable indoor air quality.         [ Links ]

3. E. Baez, B. Bermúdez, and A. Nicholas, Rev. Mex. Fis. 50 (2004) 36.         [ Links ]

4. B. Bermudez and A. Nicolas, Rev. Mex. Fis. 54 (2008) 236.         [ Links ]

5. Di Liu, Fu-Yun Zhao, Han-Qing Wang, and Ernst Rank, Int. J. Thermal Sciences 64 (2013) 81.         [ Links ]

6. Sumon Saha, Mohammad Nasim Hasan, and Iftheker Ahmed Khan, Chem. Eng. Res. Bull. 13 (2009) 17.         [ Links ]

7. Kyoungsik Chang, George Constantinescu, and Seung-o Park, J. Fluid Mech. 561 (2006) 113.         [ Links ]

8. M. A. Sheremet and N. I. Shishkin, J. Eng. Phys. Thermophys. 85 (2012) 828.         [ Links ]

9. Hao Cai, Weiding Long, Xianting Li, and Douglas Barker, Build. Environ. 45 (2010) 485.         [ Links ]

10. Z.F. Tian, J.Y. Tu, G.H. Yeoh, and R.K.K. Yuen, Build. Environ. 41 (2006) 1504.         [ Links ]

11. Bin Zhaoa, Xianting Li, Xi Chen, and Dongtao Huang, Build. Environ. 39 (2004) 1035.         [ Links ]

12. Tatsuya Hayashi, Yoshiaki Ishizu, Shinsuke Kato, and Shuzo Murakami, Build. Environ. 37 (2002) 219.         [ Links ]

13. K. Hagstrom, A.M. Zhivov, K. Siren, and L.L. Christianson, Build. Environ. 37 (2002) 55.         [ Links ]

14. Zhirong Wang, Yuanyuan Hu, and Juncheng Jiang, Energy Build. 66 (2013) 461.         [ Links ]

15. J. M. Villafruela, F. Castro, J. Francisco San José, and J. Saint-Martin, Energy Build. 57 (2013) 210.         [ Links ]

16. L. James Lo and Atila Novoselac, Build. Simul. 6 (2013) 69.         [ Links ]

17. Xinke Wang, Wei Tao, Yuanyuan Lu, and Fenghao Wang, Build. Simul. 6 (2013) 395.         [ Links ]

18. Cristina Cornaro, Alessandro Paravicini, and Annamaria Cimini, Indoor Build. Environ. 22 (2013) 445.         [ Links ]

19. I. Almesri, H.B. Awbi, E. Foda, and K. Siren, Indoor Build. Environ. 22 (2013)618.         [ Links ]

20. R. Henkes, F. Van-Der-Vlugt, and C. Hoogendoorn, Int. J. Heat Mass Tran. 34 (1991) 377.         [ Links ]

21. H. Awbi, Ventilation of Building, (E & FN Spon, 2003), pp 80-82.         [ Links ]

22. S. Patankar, Numerical heat transfer and fluid flow, (Hemisphere Publishing Co., Mc. Graw Hill Co., New York, 1980), pp.113-135.         [ Links ]

23. J. Van Doormaal and G. Raithby, Num. Heat Tran. 7 (1984) 147.         [ Links ]

24. P. Nielsen, Energy Cons. Build. Comm. Sys. An. 20, Denmark, Nov., (1990).         [ Links ]

25. J. Serrano-Arellano, J. Xamán, and G. Álvarez, Int. J. Heat Mass Tran. 62 (2013) 9.         [ Links ]

26. J. Lage and A. Bejan, Int. J. Heat Mass Tran. 35 (1992) 1169.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons