SciELO - Scientific Electronic Library Online

 
vol.60 número3Expanded use of a fast photography technique to characterize laser-induced plasma plumesAdherence and electrochemical behavior of calcium titanate coatings onto 304 stainless steel substrate índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.60 no.3 México may./jun. 2014

 

Research

 

Gravitational waves bounds in Brane-Worlds

 

M. A. García-Aspeitia

 

Departamento de Física, DCI, Campus León, Universidad de Guanajuato, León, Guanajuato, 37150, México, e-mail: aspeitia@fisica.ugto.mx

 

Received 12 February 2014
accepted 4 March 2014

 

Abstract

This paper is dedicated to investigate an astrophysical method to obtain the new dynamics generated by extra dimensions as well as bounds for the brane tension. Using the modified Einstein equations in the brane with a vanishing non-local effects, we study the contributions of the modified radiated power by gravitational waves and the stellar period modified by branes in a binary system composed by two neutron stars. Finally we propose two lower energy bounds, using these astrophysical methods.

Keywords: Branes; extra dimensions.

 

PACS: 04.50.-h

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

We would like to thank referee for his/her comments. Also, the author was indebted with Luis Urena, Leonardo Ortiz, Juan Magana, Yoelsy Leyva, Juan Barranco, Arturo Avelino and Francisco Linares for reading the first results and for the observations proposed for improving the paper. This work is supported by a CONACyT postdoctoral grant. Instituto Avanzado de Cosmología (IAC) and Beyond Standard Theory Group (BeST) collaboration. This work was partially supported by SNI-CONACyT (Mexico).

 

References

1. L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 3370. hep-ph/9905221.         [ Links ]

2. L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 4690. hep-th/9906064.         [ Links ]

3. G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485 (2000) 208. hep-th/0005016.         [ Links ]

4. A. Lue and G. Starkman, Phys. Rev. D67 (2003) 064002. astro-ph/0212083.         [ Links ]

5. P. Binetruy, C. Deffayet, U. Ellwanger, and D. Langlois, Phys. Lett. B477 (2000) 285. hep-th/9910219.         [ Links ]

6. A. Wang, R.-G. Cai, and N. Santos (2006), astro-ph/0607371.         [ Links ]

7. M. Gogberashvili, Int. J. Mod. Phys. D 11 (2002) 1635. hep-ph/9812296.         [ Links ]

8. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429 (1998) 263. hep-ph/9803315.         [ Links ]

9. A. Perez-Lorenzana (2004), hep-ph/0406279.         [ Links ]

10. M. A. Garcia-Aspeitia and T. Matos, Gen. Rel. Grav. 43 (2011) 315.         [ Links ]

11. M. A. Garcia-Aspeitia, J. Magana, and T. Matos, Gen. Rel. Grav. 44 (2012) 581.         [ Links ]

12. D. Langlois, R. Maartens, M. Sasaki, and D. Wands, Phys. Rev. D 63 (2001) 084009. http://link.aps.org/doi/10.1103/PhysRevD.63.084009.         [ Links ]

13. E. E. Flanagan, S.-H. H. Tye, and I. Wasserman, Phys. Rev. D 62 (2000) 024011. http://link.aps.org/doi/10.1103/PhysRevD.62.024011.         [ Links ]

14. J. L. Perez, L. A. Urena-Lopez, and R. Cordero (2012). 1210.5939.         [ Links ]

15. P. Binetruy, C. Deffayet, and D. Langlois, Nucl. Phys. B 565 (2000) 269. hep-th/9905012.         [ Links ]

16. R. Maartens and K. Koyama, Living Rev. Rel. 13 (2010) 5. 1004.3962.         [ Links ]

17. C. Germani and R. Maartens, Phys. Rev. D 64 (2001) 124010. hep-th/0107011.         [ Links ]

18. F. Rahaman, M. Kalam, A. DeBenedictis, A. Usmani, and S. Ray, Mon. Not. Roy. Astron. Soc. 389 (2008) 27. 0802.3453.         [ Links ]

19. J. D. Barrow and R. Maartens, Phys. Lett. B 532 (2002) 153. gr-qc/0108073.         [ Links ]

20. K. Ichiki, M. Yahiro, T. Kajino, M. Orito, and G. Math- ews, Phys. Rev. D 66 (2002) 043521. astro-ph/0203272.         [ Links ]

21. J. D. Bratt, A. Gault, R. J. Scherrer, and T. Walker, Phys. Lett. B 546 (2002) 19. astro-ph/0208133.         [ Links ]

22. A. Mazumdar, Phys. Rev. D 64 (2001) 027304. hep-ph/0007269.         [ Links ]

23. T. Shiromizu, K.-i. Maeda, and M. Sasaki, Phys. Rev. D 62 (2000) 024012. gr-qc/9910076.         [ Links ]

24. K. Koyama, Phys. Rev. Lett. 91 (2003) 221301. astro-ph/0303108.         [ Links ]

25. C. Rhodes, C. van de Bruck, P. Brax, and A. Davis, Phys. Rev. D 68 (2003) 083511. astro-ph/0306343.         [ Links ]

26. A. V. Frolov and L. Kofman (2002). hep-th/0209133.         [ Links ]

27. D. Langlois, R. Maartens, and D. Wands, Phys. Lett. B 489 (2000) 259. hep-th/0006007.         [ Links ]

28. D. Gorbunov, V. Rubakov, and S. Sibiryakov, JHEP 0110 (2001) 015. hep-th/0108017.         [ Links ]

29. G. Harry, The LIGO Gravitational Wave Observatories: Recent Results and Future Plans, P030058-00, LSC publications (2009).         [ Links ]

30. S. A. Hughes, S. Marka, P. L. Bender, and C. J. Hogan, eConf C 010630 (2001) P402, astro-ph/0110349.         [ Links ]

31. J. M. Weisberg and J. H. Taylor, ASP Conf. Ser. 328 (2005) 25. astro-ph/0407149.         [ Links ]

32. P. C. Peters and J. Mathews, Phys. Rev. 131 (1963) 435. http://link.aps.org/doi/10.1103/Phys.Rev.131.435.         [ Links ]

33. J. Taylor and J. Weisberg, A.P.J. 253 (1982) 908.         [ Links ]

34. S. Ransom et al., (2014), 1401.0535.         [ Links ]

35. In general ξμv ≠ 0 in realistic astrophysical models, however it is necessary to note that the system of equations for the exterior is not closed until a further condition is given on the Weyl tensor; for this reason ξμv ≠ 0 [16].

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons