SciELO - Scientific Electronic Library Online

 
vol.60 issue2Preparation and chemical characterization of neodymium-doped molybdenum oxide films grown using spray pyrolysisAbout the inclusion of an infinite number of resonances in anomalous decays author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.60 n.2 México Mar./Apr. 2014

 

Investigación

 

Collapse-driven formation of a tetratic structure of confined quasi-2D granular tubes

 

R. Sánchez and A. Huerta

 

Departamento de Física, Facultad de Física e Inteligencia Artificial, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria, Xalapa 91000, Veracruz, Mexico, e-mail: rodrsanchez@uv.mx

 

Received 8 October 2013.
Accepted 27 November 2013.

 

Abstract

A tetratic phase, characterized by four-fold orientational symmetry, is observed in an experimental quasi-2D system of tubular particles subject to granular collapse. Evidence is presented that the cell's aspect ratio primarily affects the fraction of particles aligned along the length of the cell and not the overall degree of tetratic order as measured by the tetratic order parameter S4, and that granular collapse enhances tetratic order beyond the effect of increasing the effective local density.

Keywords: Quasi-2D; granular collapse; tetratic order; driven granular media; tubular particles.

 

PACS: 68.18.-g; 68.47.Pe; 81.05.Rm

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

AH acknowledges funding from CONACYT (project number 152431), and RS acknowledges separate support from CONACYT (Retención 174462). The authors also acknowledge technical assistance from I. C. Romero-Sánchez.

 

References

1. V. Narayan, N. Menon, and R. Ramaswamy, J. Stat. Mech. Theor. Exp. (2006) P01005.         [ Links ]

2. J. P. F. Lagerwall, and G. Scalia, Curr. Appl. Phys. 12 (2012) 1387.         [ Links ]

3. Z. Dogic and S. Fraden, Curr. Opin. Colloid In. 11 (2006) 47.         [ Links ]

4. D. Volfson, S. Cookson, J. Hasty, and L. S. Tsimring, Proc. Natl. Acad. Sci. 105 (2008) 15346.         [ Links ]

5. S. R. Levis, P. B. Deasy, Int. J. Pharm. 243 (2002) 25.         [ Links ]

6. S. Miller, S. Luding, Phys. Rev. E 69 (2004) 031305.         [ Links ]

7. J. Tobochnik, Phys. Rev. E 60 (1999) 7137.         [ Links ]

8. P. M. Reis, R. A. Ingale, and M. D. Shattuck, Phys. Rev. Lett. 98 (2007) 188301.         [ Links ]

9. F. Pacheco-Velázquez, G. A. Caballero-Robledo, J. C. Ruiz-Suárez, Phys. Rev. Lett. 102 (2009) 170601.         [ Links ]

10. S. C. McGrother, D. C. Williamson, G. Jackson, J. Chem. Phys. 104 (1996) 6755-6771.         [ Links ]

11. P. Bolhuis, and D. Frenkel, J. Chem. Phys. 106 (1997) 666-687.         [ Links ]

12 . S. C. McGrother, A. Gil-Villegas, and G. Jackson, Mol. Phys. 95 (1998) 657.         [ Links ]

13. S. V. Savenko, and M. Dijkstra, Phys. Rev. E 70 (2004) 051401.         [ Links ]

14. C. Avendaño, A. Gil-Villegas, E. Gonzalez- Tovar, J. Chem. Phys. 128 (2008) 044506.         [ Links ]

15. T. J. Rudge, P. J. Steiner, A. Phillips, J. Haseloff, ACS Synth. Biol. 1 (2012) 345.         [ Links ]

16. M. R. Wilson, J. Chem. Phys. 107 (1997) 8654-8663.         [ Links ]

17. K. W. Wojciechowski, and D. Frenkel, Comp. Met. Sci. Technol. 10 (2004) 235.         [ Links ]

18. A. Donev, J. Burton, F. H. Stillinger, and S. Torquato, Phys. Rev. B 73 (2006) 054109.         [ Links ]

19. G. Gradenigo, A. Sarracino, D. Villamaina, and A. Puglisi, Europhys. Lett. 96 (2011) 14004.         [ Links ]

20. Z. Zhang et al., Nature 459 (2009) 230.         [ Links ]

21. R. Sánchez, I. C. Romero-Sánchez, S. Santos- Toledano, A. Huerta, unpublished results (2013).         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License