SciELO - Scientific Electronic Library Online

 
vol.59 número6Aggregate structures of the sorbitan monooleate (SPAN80) surfactant at TiO2(rutile)/water interfaces by computer simulationsRediseño, análisis y simulación mecánica del comportamiento de una lente sólida elástica SEL de apertura máxima índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.6 México nov./dic. 2013

 

Investigación

 

Origin of dielectric relaxations in polycrystalline RbHSeO4 above room temperature

 

O. Checaa, R. A. Vargasb and J. E. Diosab

 

a Departamento de Ciencias Básicas, Universidad Nacional de Colombia, Palmira, Colombia. e-mail: oychecac@unal.edu.co

b Departamento de Física, Universidad del Valle, A.A. 25360, Cali, Colombia.

 

Received 6 May 2013
Accepted 24 July 2013

 

Abstract

In the present paper, the dielectric relaxation properties of RbHSeO4 have been studied by means of impedance spectroscopy measurements over wide ranges of frequencies at several isotherms (T<415 K). The frequency dependence of the permittivity data reveal a distinct dielectric relaxation at low frequency, which is about 385 Hz at 310 K, then it shifts to higher frequencies (~40 kHz) as the temperature increases. The ƒmax vs. reciprocal T shows an activated relaxation process with an activation energy of 0.9 eV, which is in close agreement with that associated with transport of charge carriers. We suggest that the observed dielectric relaxation could be attributed to polarization induced by the proton jump and selenate tetrahedral reorientations. The displacement of mobile H+ proton accompanied by SeO‾42 tetrahedra reorientations create structural distortion in both sublattices which induce localized dipoles like HSeO‾4.

Keywords: Ionic conductivity; dielectric relaxations.

 

PACS: 67.25.du; 77.22.Gm; 72.50.b; 73.61.Jc

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

The authors would like to acknowledge the support of the Banco de la República de Colombia and Grupo de Física Aplicada III, Universidad Complutense de Madrid.

 

References

1. F. A. Cotton, B. A. Frenz, and D. L Hunter, Acta Cryst. B 31 (1975) 302.         [ Links ]

2. Y.N. Moskvich, O.V. Rozanov, A.A. Sukhovsky, and I.P. Aleksandrova, Ferroelectrics 63 (1985) 83.         [ Links ]

3. O.V. Rozanov, Y.N. Moskvich, and Sukhovskii, Sov. Phys. Solid State 25 (1983) 212.         [ Links ]

4. Y.N. Moskvich, A.A. Sukhovskii, and O.V. Rozanov, Sov. Phys. Solid State 26 (1984) 21.         [ Links ]

5. A. Waskowska, S. Olejnik, and K. Lukaszewicz, Acta Cryst. B 34 (1978) 3344.         [ Links ]

6. A. Waskowska, S. Olejnik, K. Lukaszewicz, and Z. Czapla, Cryst. Struct. Comm. 9 (1980) 663.         [ Links ]

7. I. Brach, D.J. Jones, and J. Roziere, J. Solid State Chem. 48 (1983) 401.         [ Links ]

8. I.P. Makarova, E.E. Rider, V.A. Sarin, I.P. Aleksandrova, and V.I. Simonov, Sov. Phys. Cristallogr. 34 (1989) 510.         [ Links ]

9. J. Majszczyk, J. Raczka, and Z. Czapla, Phys. Status Solidi (a) 67 (1981) K123.         [ Links ]

10. I.P. Aleksandrova, O.V. Rozanov, A.A. Sukhovsky, and Y.N. Moskvich, Phys. Letters 95A (1983) 339.         [ Links ]

11. Z. Czapla, T. Lis, L. Sobczyk, and A. Waskowska, Ferroelectrics 26 (1980) 771.         [ Links ]

12. R. Poprawski, J. Mroz, Z. Czapla, and L. Sobczyk, Acta Phys. Pol. A 55 (1979) 641.         [ Links ]

13. J. Kroupa, and Z. Czapla, Ferroelectrics 25 (1980) 597.         [ Links ]

14. Yves Luspin, Yann Vaills, and Georges Hauret, Solid State Communications 87 (1993) 523.         [ Links ]

15. J. C. Badot. A. Fourier-Lamer, N. Baffier, and Ph. Colomban, J. Phys. (Paris) 48 (1985) 1327.         [ Links ]

16. J. C. Badot. A. Fourier-Lamer, N. Baffier, and Ph. Colomban, Solid State Ionics 28-30 (1988) 1617.         [ Links ]

17. J. C. Badot, and Ph. Colomban, Solid State Ionics 35 (1989) 143.         [ Links ]

18. Ph. Colomban, and A. Novak, J. Mol. Struct. 177 (1988) 277.         [ Links ]

19. J. E. Diosa, R. A. Vargas, I. Albinson, and B.-E. Mellander, Phys. Stat. Sol. (b) 241 (2004) 1369.         [ Links ]

20. J. E. Diosa, R. A. Vargas, I. Albinson, and B.-E. Mellander, Solid State Communication 132 (2004) 55.         [ Links ]

21. J. E. Diosa, R. A. Vargas, I. Albinson, and B.-E. Mellander, Solid State Communication 136 (2005) 601.         [ Links ]

22. J. E. Diosa, R. A. Vargas, M. E. Fernández, I. Albinsson, and B.-E. Mellander, Physics Status Solidi (c) 2 (2005) 3714.         [ Links ]

23. J. E. Diosa, R. A. Vargas, I. Albinson, and B.-E. Mellander, Ferroelectrics 333 (2006) 253.         [ Links ]

24. J. E. Diosa, Peña Lara. D, and R. A. Vargas, Journal of Physics and Chemistryof Solids 74 (2013) 1017.         [ Links ]

25. O. Checa, J.E. Diosa, R.A. Vargas, and J. Santamaria, Solid State Ionics 180 (2009) 673.         [ Links ]

26. C. Elissalde, and R. Ravez, J. Mater. Chem 11 (2001) 1957.         [ Links ]

27. K. Funke, and R. D. Banhatti, Solid State Ionics 177 (2006) 1551.         [ Links ]

28. A. K. Jonscher, Universal Relaxation Law, (Chelsea Dielectric Press, London, 1996) p. 143.         [ Links ]

29. M. Mizuno, and S Hayashi, Solid State Ionics 167 (2004) 317.         [ Links ]

30. S. Hayashi, and M. Mizuno, Solid State Ionics 171 (2004) 289.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons