SciELO - Scientific Electronic Library Online

 
vol.59 número6Predicting the piezoresistance contribution of carbon nanotubes in a polymer matrix through finite element modelingPropiedades magnéticas del sistema de aleaciones CuAl1_xCr xS2 (x = 0.50, 0.75) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de física

versão impressa ISSN 0035-001X

Rev. mex. fis. vol.59 no.6 México Nov./Dez. 2013

 

Investigación

 

Study of plasma displacement and ßp +li/2 by the simplest Grad-Shafranov equation solution for circular cross section tokamak

 

M. Asif

 

Department of Physics, COMSATS Institute of Information Technology, Lahore 54000, Pakistan.

 

Received 24 January 2013
Accepted 23 July 2013

 

Abstract

In this work we present the plasma displacement and ßp +li/2 by the Simplest Grad-Shafranov Equation (GSE) solution using Solov'ev assumption for circular cross section HT-7 tokamak. Using diamagnetic and compensation loop, combining with poloidal magnetic probe array signals, plasma displacement and ßp +li/2 are measured. In this paper, theoretical and experimental results in determining plasma displacement and ßp +li/2 are presented. We have seen that the calculated plasma displacement and the calculated ßp +li/2 depend on the kind of discharge or plasma current.

Keywords: Magnetohydrodynamics; two-fluid and multi-fluid plasmas.

 

PACS: 52.30.Cv; 52.30.Ex

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. L.L. Lao et al., Nucl. Fusion 25 (1985) 1611.         [ Links ]

2. D.W. Swain, G.H. Neilson, Nucl. Fusion 22 (1982) 1015.         [ Links ]

3. J.L. Luxon, B.B. Brown, Nucl. Fusion 22 (1982) 813.         [ Links ]

4. H. Grad and H. Rubin, in Proceedings of the Second United Nations Conference on the Peaceful uses of Atomic Energy (United Nations, Geneva, 1958) 31 190.         [ Links ]

5. V. D. Shafranov, Sov. Phys. JETP. 6 (1958) 545;         [ Links ] Zh. Eksp. Teor.Fiz. 33 (1957) 710.         [ Links ]

6. L. S. Solov'ev, Sov. Phys. JETP. 26 (1968) 400;         [ Links ] Zh. Eksp. Teor. Fiz. 53 (1967) 626.         [ Links ]

7. J. P. Freidberg, Ideal Magnetohydrodynamics (Plenum, New York, 1985). p. 162.         [ Links ]

8. S. B. Zheng, A. J. Wootton, E. R. Solano, Phys. Plasmas. 3 (1996) 1176.         [ Links ]

9. A. Rahimirad , M. Emami, M. Ghoranneviss, A. Salar Elahi, J. Fusion Energ. 29 (2010) 73.         [ Links ]

10. M.Asif, Magnetohydrodynamics 47 (2011) 11.         [ Links ]

11. A. Rahimi-Rad et al., J. Fusion Energ. 32 (2013) 405.         [ Links ]

12. A. Salar Elahi, et al. J. Fusion Energ. 28 (2009) 346.         [ Links ]

13. B. Shen et al. Review of Scientific Instruments 12 (2005) 082502.         [ Links ]

14. C.V. Atanasiu et al., Phys. Plasmas 11 (2004) 3510.         [ Links ]

15. J.P. Freidberg et al., Plasma. Phys. Control. Fusion 35 (1993) 1641.         [ Links ]

16. V.S Mukhovatov, V.D Shafranov, Nucl. Fusion 11 (1971) 605.         [ Links ]

17. H. Ninomiya, N. Suzuki, Jpn. J. Appl. phys 21 (1982) 1323.         [ Links ]

18. M.Asif et al., Physics Letters A 342 (2005) 175.         [ Links ]

19. M.Asif et al., Brazilian Journal of Physics 36 (2006) 190.         [ Links ]

20. M. Asif, et al. , Phys. Plasmas 12 (2005) 082502.         [ Links ]

21. A. Rahimi et al., Phys. Scr. 81 (2010) 045502.         [ Links ]

22. A. Salar Elahi et al., Journal of Fusion Energy 28 (2009) 390.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons