SciELO - Scientific Electronic Library Online

 
vol.59 número6Frequency behavior of saturated nonlinear function series based on opampsStudy of plasma displacement and ßp +l i/2 by the simplest Grad-Shafranov equation solution for circular cross section tokamak índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.6 México nov./dic. 2013

 

Investigación

 

Predicting the piezoresistance contribution of carbon nanotubes in a polymer matrix through finite element modeling

 

A. I. Oliva-Avilésa, V. Sosaa, F. Avilésb

 

a Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Departamento de Física Aplicada, Apartado Postal 73-Cordemex, 97310, Mérida, Yucatán, México. e-mail: andresivan19@hotmail.com.

b Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43, No. 130 Col. Chuburná de Hidalgo, 97200, Mérida, Yucatán, México.

 

Received 2 May 2012
Accepted 25 June 2013

 

Abstract

The change in electrical resistance due to mechanical deformation of carbon nanotube (CNT)/polymer composites can be rationalized in terms of two main effects: i) changes in the composite electrical resistivity due to changes in the CNT network configuration, and ii) deformation of the CNTs themselves. The contribution of CNT dimensional changes (ii) to the piezoresistivity of CNT/polymer composites is investigated here. A model based on a representative volume element which describes the CNT geometrical contribution to the composite electromechanical response (piezoresistivity) in terms of the CNT and matrix deformations is proposed. Finite element analysis is performed to correlate the macroscale composite strain to the individual CNT strain. The CNT geometric contribution to the piezoresistivity of the composite is quantified for a range of matrix elastic modulus and different CNT orientations. Based on the model predictions and previous experimental results, it is estimated that the contribution of the CNT deformation to the composite piezoresistivity is only about 5%, indicating that the dominant effect in the piezoresistivity of CNT/polymer composites is the change in the CNT network configuration.

Keywords: Carbon nanotubes; piezoresistivity; polymer composites; finite element.

 

PACS: 73.63.Fg; 72.80.Tm; 72.20.Fr.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This work was supported by CONACYT (Mexico) through CIAM project No. 188089 Authors greatly appreciate the valuable comments of Dr. GaryD. Seidel from Virginia Tech.

 

References

1. T.W. Tombler et al., Nature 405 (2000) 769.         [ Links ]

2. M.B. Nardelli and J. Bernholc, Phys. Rev. B 60 (1999) 16338.         [ Links ]

3. P. Dharap, Z. Li, S. Nagarajaiah and E.V. Barrera, Nanotechnology 5 (2004) 379.         [ Links ]

4. W. Zhang, J. Suhr and N. Koratkar, J. Nanosci. Nanotechnol. 6 (2006) 960.         [ Links ]

5. I.P. Kang, M.J. Schulz, J.H. Kim, V. Sanov and D.L. Shi, Smart. Mater. Struct. 15 (2006) 737.         [ Links ]

6. L.J. Lanticse etal., Carbon 44 (2006) 3078.         [ Links ]

7. R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey, Chem. Phys. Lett. 330 (2000) 219.         [ Links ]

8. J.R. Wood, Q. Zhao, H.D. Wagner, Composites A 32 (2001) 391.         [ Links ]

9. E.T. Thostenson, T.W. Chou, J. Phys. D: Appl. Phys. 36 (2002) L77.         [ Links ]

10. J.K.W. Sandler et al., Polymer 45 (2004) 2001.         [ Links ]

11. P. Potschke, S.M. Dudkin, I. Alig, Polymer 44 (2003) 5023.         [ Links ]

12. T. Kimura, H. Ago, M. Tobita, S. Ohshima, M. Kyotani, M. Yumura, Adv. Mater. 14 (2002) 1380.         [ Links ]

13. B.W. Smith, Z. Benes, D.E. Luzzi, J.E. Fischer, Appl. Phys. Lett. 77 (2000) 663.         [ Links ]

14. J. Hone J et al., Appl. Phys. Lett. 77 (2000) 666.         [ Links ]

15. K. Yamamoto, S. Akita, Y. Nakayama, J. Phys. D: Appl. Phys. 31 (1998) L34.         [ Links ]

16. M.S. Kumar, T.h. Kim, S.H. Lee, S.M. Song, J.W. Yang, K.S. Nahm, E.K. Suh, Chem. Phys. Lett. 383 (2004) 235.         [ Links ]

17. J. Li, Q. Zhang, N. Peng, Q. Zhu, Appl. Phys. Lett. 86 (2005) 153116.         [ Links ]

18. R. Krupke, F. Hennrich, H. Löhneysen, M. Kappes, Science 301 (2003) 344.         [ Links ]

19. C. Park et al., J. Polym. Sci. B 44 (2006) 1751.         [ Links ]

20. A.I. Oliva-Avilés, F. Avilés V. Sosa, A.I. Oliva, F. Gamboa, Nanotechnology 23 (2012) 465710.         [ Links ]

21. A.I. Oliva-Avilés, F. Avilés and V. Sosa, Carbon 49 (2011)2989.         [ Links ]

22. N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu and H. Fukunaga, Carbon 48 (2010) 680.         [ Links ]

23. T.C. Theodosiou and D.A. Saravanos, Compos. Sci. Technol. 70 (2010) 1312.         [ Links ]

24. M.D. Rein, O. Breuer and H.D. Wagner, Compos. Sci. Technol. 71 (2011) 373.         [ Links ]

25. C. Li, E.T. Thostenson and T.W. Chou, Appl. Phys. Lett. 91 (2007) 223114.         [ Links ]

26. M.H.G. Wichmann, S.T. Buschhorn, J. Gehrmann and K. Schulte, Phys. Rev. B 80 (2009) 245437.         [ Links ]

27. A.S. Kobayashi, Handbook on Experimental Mechanics (VCH Publishers, New York, 1993), p.40.         [ Links ]

28. X.L. Chen and Y.J. Liu, Comput. Mat. Sci. 29 (2004) 1.         [ Links ]

29. UDEL Polysulfone Design Guide, Solvay Advanced Polymers (2002).         [ Links ]

30. P.G. Collins and P. Avouris, Scient. Am. 238 (2000) 62.         [ Links ]

31. C. Li and T.W. Chou, J. Nanosci. Nanotechnol. 3 (2003) 423.         [ Links ]

32. R.L. Hannah and S.E. Reed, Strain Gage User's Handbook (Elsevier Applied Science, London and New York, 1992). p. 4.         [ Links ]

33. M. Park, H. Kim and J. Youngblood, Nanotechnology 19 (2008) 055705.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons