SciELO - Scientific Electronic Library Online

 
vol.59 número5Operator folding and matrix product states in linearly-coupled bosonic arraysMetallic behaviour at YBaCuO7/Zas interfaces (G=Ga, Al) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.5 México sep./oct. 2013

 

Investigación

 

DFT study of the pressure influence on the electronic and magnetic properties of Ga𝒳Mn1-𝒳N compound

 

Miguel J. Espitia R., Octavio Salcedo Parra, and John H. Díaz F.

 

GEFEM Group, Distrital University Francisco José de Caldas, Bogotá Colombia, e-mail: mespitiar@udistrital.edu.co; ojsalcedop@udistrital.edu.co; jhdiazf@udistrital.edu.co.

 

Received 1 April 2013
Accepted 2 May 2013

 

Abstract

We report a firt-principles study of the pressure dependence of electronic and the magnetic properties of Ga𝒳Mni1-𝒳N compounds (𝒳 = 0.25, 0.50 and 0.75) in wurtzite-derived structures. We use the full-potential linearized augmented plane wave method (FP-LAPW) within of the density functional theory framework. We found that, the lattice constant vary linearly with Ga-concentration. The magnetic moment changes for a critical pressure. At 𝒳= 0.75, a rather abrupt onset of the magnetic moment from 0 to 6.02 µB at Per = 26.50 GPa is observed. For 𝒳= 0.25 and 0.50 Ga concentrations, the magnetic moment increases gradually when the pressure decreases toward the equilibrium value. We study the transition pressure dependence to a ferromagnetic phase near the onset of magnetic moment for each Ga𝒳Mni1-𝒳N compounds. The calculation of the density of states with Ga concentration is carried out considering two spin polarizations. The results reveal that for 𝒳= 0.75 the compound behaves as a conductor for the spin-up polarization and that the density of states for spin-down polarization is zero at the Fermi level. At this concentration the compound presents a half metallic behavior; therefore this material could be potentially useful as spin injector. At high pressures P > Pcr the compounds exhibit a metallic behavior.

Keywords: FP-LAPW; magnetic semiconductors; pressure dependence.

 

PACS: 68.35.B; 68.35.Md; 68.43.Bc; 68.43.Fg

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. O. Arbouche, B. Belgoumene, B. Soudini and M. Driz, Computational Materials Science. 47 (2009) 432-438.         [ Links ]

2. S. Nakamura, Solid State Communications. 102 (1997) 237243.         [ Links ]

3. S. Nakamura, M. Senoh,N. Iwasa and S.-i. Nagahama, Applied Physics Letters. 67 (1995) 1868.         [ Links ]

4. H. Bar-llan, S. Zamir, O. Katz, B. Meyler, J. Salzman, Materials Science and Engineering A. 302 (2001) 14-17        [ Links ]

5. R. J. Trew, M.W. Shin and V. Gatto, Solid-State Electronics. 41 (1997) 1561- 1567.         [ Links ]

6. S. J. Pearton, F. Ren, A.P. Zhang and K.P. Lee, Materials Science and Engineering: R: Reports. 30 (2000) 55-212.         [ Links ]

7. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science. 287 (2000) 1019-1022.         [ Links ]

8. X. M. Cai, A. B. Djurisic, M .H. Xie, H. Liu, X. X. Zhang, J. J. Zhu and H. Yang, Materials Science and EngineeringB. 117 (2005) 292-295.         [ Links ]

9. Joongoo Kang, K.J. Chang, Physica B. 376 (2006) 635-638.         [ Links ]

10. Yanlu Li, Weiliu Fan, Honggang Sun, Xiufeng Cheng, PanLi, Xian Zhao and Minhua Jiang, Journal of Solid State Chemistry. 183 (2010) 2662-2668.         [ Links ]

11. K. Sato, P.H. Dederics and H. Katayama-Yoshida, Europhysics Letters. 61 (2003) 403-408.         [ Links ]

12. S. J. Pearton etal., Thin Solid Films. 447 (2004) 493-501.         [ Links ]

13. M. Souissi, A. Bchetnia and B. El Jani, Journal of Crystal Growth. 277 (2005) 57-63.         [ Links ]

14. Schwarz Karlheins. DFT calculations of solids with LAPW and WIEN2k. Journal of Solid State Chemistry. 176 (2003) 319328.         [ Links ]

15. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka and J. Luitz. WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology) 2009. ISBN 3-9501031-1-2        [ Links ]

16. P. Hohenberg and W. Kohn, Physical Review 136 (1964) 864871.         [ Links ]

17. P. Hohenberg and W. Kohn, Physical Review 136 (1964) 864871.         [ Links ]

18. J. P. Perdew, K. Burke and M. Ernzerhof, Physical Review Letters 77 (1996) 3865-3868.         [ Links ]

19. H. J. Monkhorst and J.D. Pack, Physical Review, 13 (1976) 5188-5192.         [ Links ]

20. M. G. Moreno-Armenta, L. Mancera, N. Takeuchi, Physica Status Solidi (b). 238 (2003) 127-135.         [ Links ]

21. R. Vidyasagar, Y. T. Lin and L. W. Tu. Material Research Bulletin 47 (2012) 4467-4471.         [ Links ]

22. Zdenek Sofer et al., journal of Crystal Growth 310 (2008) 5025-5027.         [ Links ]

23. C. X. Gao, F. C. Yu, D. J. Kim, H. J. Kim and Y. E. Ihm, Journal of the Korean Physical Society. 54 (2009) 633-636        [ Links ]

24. I. T. Yoon, M.H. Ham, J.M. Myoung, Applied Surface Science 255 (2009) 4840-4843        [ Links ]

25. F. D. Murnaghan, Proceedings of the National Academy Science. 30 (1944) 244-250.         [ Links ]

26. P. William Lopez, M.G. Jairo Arbey Rodriguez and M. Armenta, Physica B: Condensed matter. 398 (2007) 385-388.         [ Links ]

27. R. Gonzalez Hernandez, W. Lopez Perez, F. Fajardo and J. Arbey Rodriguez, M. Materials Science and Engineering B. 163 (2009) 190-193.         [ Links ]

28. Biswas Kanishka, Sardar, Kripasindhu and Rao C. NR. Applied Physics Letters. 89 (2006) 132503 - 132503-3        [ Links ]

29. X. M. Caia et al., Materials Science and Engineering B. 117 (2005) 292-295.         [ Links ]

30. B. Hu et al., Applied Surface Science 258 (2011) 525-529.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons