SciELO - Scientific Electronic Library Online

 
vol.59 número5Efectos de dispersión a primer orden y SRS sobre un pulso con polarización circular dentro de un NOLM con fibra torcida en lazoAtomic radiative corrections without QED: role of the zero-point field índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.5 México sep./oct. 2013

 

Investigación

 

Investigation on the structure-electrical property relationship of hydrolyzed poly(vinyl alcohol) membranes

 

J.F. Juradoa, O. Checaa and, R.A. Vargasb

 

a Departamento de Física y Química, Universidad Nacional de Colombia, A.A 127, Manizales, Colombia e-mail: jfjurado@unal.edu.co.

b Departamento de Física, Universidad del Valle, A.A. 25360, Cali, Colombia.

 

Received 26 Octuber 2012
Accepted 25 April 2013

 

Abstract

This investigation explored the effects of the pre-treatment temperature on the molecular conformations and electrical performance of poly(vinyl alcohol) (PVOH) membranes. The structure and properties of the membranes were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Raman scattering (RS) and impedance measurements (IE). Water molecules absorbed by the PVOH membranes, which decreased in quantity as the temperature increased caused drastic change to be observed in the relative band intensities of the OH and CH2 bonds with respect to the C-C bonds. The observations for the hydrated PVOH were correlated with the proton transport behavior, which were inferred from conductivity relaxation measurements over various temperature regions and were dependent on the water content in the membrane. The results were corroborated by DSC and TGA. For example, the temperature dependence of the conductivity relaxation frequency, ωmax, followed different Arrhenius-type thermally activated processes at low and high temperatures. The corresponding activation energies in the low and high temperature regions were: 1.42±0.02 and 0.23±0.02 eV, respectively. In addition, the selected fitting temperature regions and activation energies for the ωmax data were equivalent (within experimental error) to the values for the dc-conductivity, σ0(T). This result indicates that the mechanisms for long range ion displacement (dc conductivity) and ion-ion or ion-polymer chain correlations are identical, (i.e., an ion-hoping occurred in the various hydrated phases of PVOH).

Keywords: X-ray diffraction; vibrational states in disordered systems; ionic conduction; polymers.

 

PACS: 61.05.cp; 63.50.+x; 66.10.Ed; 66.30.hk

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. J.M.G. Cowie and S.H. Cree, Annu. Rev. Phys. Chern. 40 (1989)85.         [ Links ]

2. V. S. Praptowidodo, J. Molecular Structure 739 (2005) 207.         [ Links ]

3. Wei Zhang, Zhennan Zhang, and Xinping Wang, J. Colloid and Interface Science 333 (2009) 346.         [ Links ]

4. Chun-Chen Yang, Sheng-Jen Lin, and Gwo-Mei Wu, Mater. Chem. Phys. 92 (2005) 251.         [ Links ]

5. Arfat Anis, A.K. Banthia and S. Bandyopadhyay, J. Materials Engineering and Performance 17 (2008) 772        [ Links ]

6. Li-Zhi Zhang, Yuang-Yuan Wang, Cai-Ling Wang, and Hui Zianng, J. Membrane Sci. 308 (2008) 198.         [ Links ] Arfat Anis, A.K. Banthia and S. Bandyopadhyay, J. Materials Engineering and Performance 17 (2008) 772.         [ Links ]

7. P. Balaji Bhargav, V. Madhu Mohan, and A.K. Sharma, Ionics 13 (2007) 173        [ Links ]

8. M.A. Vargas Z. B-E. Mellander, and R.A. Vargas, Physic. Status Solid B-Basic Research 220 (2000) 615.         [ Links ] M.A. Vargas, A. Garcia M., and R.A Vargas, Electrochemical Acta 43 (1998) 1271.         [ Links ] M.A. Vargas, B-E. Mellander, and R.A. Vargas, Electrochemical Acta 45 (2000) 1399;         [ Links ] J.H. Castillo, J.R, Castillo, M.N. Chacon, and R.A Vargas, Ionics 15 (2009) 537.         [ Links ] R.A. Vargas, F. Bedoya, J.E. Castillo, L.A. Rodriguez, and M. Cachon, J. Nanostructured Polymers And Nanocomposites 6 (2010) 87.         [ Links ]

9. Jen Ming Yang, Wen Yu Su, Te Lang Leu, and Ming Chein Yang, J. Memebrane Science 236 (2004) 39.         [ Links ]

10. Z. Guo etal., J. Nanopart. Res. 12 (2010) 2415.         [ Links ] S. Pyne etal., J. Nanopart. Res. 13 (2011).         [ Links ]

11. D.S. Patil, J.S. Shaikh, D.S. Dalavi, S.S Kalagi, and P.S. Patil, Mater. Chem. Phys. 128 (2011) 449.         [ Links ]

12. H. Mansur, Alexandra A.P. Mansur, Mater. Chem. Phys. 125 (2011)709.         [ Links ]

13. I.S. Elashmawi, N.A. Hakeem, and M. Soliman Selim, Mater. Chem. Phys. 115 (2009) 132        [ Links ]

14. Young Moo Lee, Su Hwi Kim and Seon Jeong Kim, Polymer 26 (1996) 5897.         [ Links ]

15. H. E. Assendert and A. H. Windle, Polymer 18 (1998) 4295.         [ Links ]

16. I.A. Volegova, E.V. Konyukhova, and K. Godovsky, J. Therm Anal Calorim. 59 (2000) 123.         [ Links ]

17. A. K. Jonscher, Nature267 (1977) 673.         [ Links ]

18. D.P Almond and A.R. West, Nature 306 (1983) 456.         [ Links ] D.P Almond, G.K. Ducan, and A.R. West, S. Statelonics8 (1983) 159;         [ Links ] L. Marawski and R.J. Barczynski, S. State Ionics 176 (2005) 2145.         [ Links ]

19. F. Funke, Prog. Solid St. Chem. 22 (1993) 111.         [ Links ]

20. C.L. Londono-Calderon, C. Vargas-Hernández, and J.F.Jurado, Rev. Mex. Fis 56 (2011) 411.         [ Links ] J. Jurado, C. Vargas-Hernández, and R.A. Vargas, Rev. Mex. Fis. 58 (2012) 411.         [ Links ]

21. M. Ravi, Y. Pavani, K. Kiran Kumar, S. Bhavani, A.K. Sharma, and V.V.R. Narasimha Rao, Mater. Chem. Phys. 130 (2010) 442.         [ Links ]

22. J. Ross Macdonald, S. State Ionics 176 (2005) 1961;         [ Links ] D.P. Almond and A.R. West, S. State Ionics 11 (1983) 57.         [ Links ]

23. M.A. Ahmed and M.S. Abo-Ellil, J. Materials Science: Materials Electronics 9 (1998) 391.         [ Links ]

24. A.M. Shehap, Egypt. J. Solids 1 (2008) 75.         [ Links ]

25. G. Socrates, Infrared and Raman Characteristic Group Frequencies Tables and Charts, (Thon Wiley & Sons, LTD, third edition, N.Y., 2004).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons