SciELO - Scientific Electronic Library Online

vol.59 issue2Estructura reconfigurable: comparador/multiplexor/demultiplexorPhenomenological model for yield stress based on the distribution of chain lengths in a dilute magnetorheological fluid under an oscillatory magnetic field author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.59 n.2 México Mar./Apr. 2013




Exploring solutions for Type-II superconductors in critical state


C. Romero-Salazar and O.A. Hernández-Flores


Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Av. Universidad s/n. Colonia Cinco Seniores, Oaxaca de Juárez, 68120, Oax, México, e-mail:;


Recibido el 13 de junio de 2012.
Aceptado el 28 de noviembre de 2012.



An analytical solution is found for magnetic induction in a type-II superconducting plate in parallel geometry. In this study, critical current density is modeled following the Ming Xu et al., approach which requires the adjusting parameters n and B*. A symmetry relation between the generating equations of the H > 0 and H < 0 cases is presented, as well as an equivalence between vertical and power laws for a superconductor in steady state. We present a systematic procedure for identifying magnetic induction profiles and we analyze the physical characteristics of the superconducting plate when n and B* vary. Specifically, we present flat surface plots of the penetration field, double penetration field, critical current density and, finally, an application of our results to calculate the shielding field, which prevents the occurrence flux jumps.

Keywords: Type-II superconductors; critical state; stationary state.


PACS: 74.20.-z; 74.25.Ha; 74.25.Wx; 74.25.Sv





This research was supported by: (C. Romero-Salazar) PROMEP/103.5/10/4975 and (O.A. Hernández-Flores) SEP-CONACYT-CB-2008-01-106433.



1. C.P. Bean, Phys. Rev. Lett. 8 (1962) 250.         [ Links ]

2. John. R. Clem and Antonio Perez-Gonzalez, Phys. Rev. B 30 (1984) 5041.         [ Links ]

3. Antonio Perez-Gonzalez and John. R. Clem, J. Appl. Phys. 58 (1985) 4326.         [ Links ]

4. A. Badía y C. López, Phys. Rev. Lett. 87 (2001) 127004.         [ Links ]

5. I.F. Voloshin, A.V. Kalinov, S.E. Savel'ev, L.M. Fisher, V.A. Yampolskiĭ, and F. Perez Rodríguez, JETP 84 (1997) 1063.         [ Links ]

6. S.E. Savel'ev, L.M. Fisher, V.A. Yampolskiĭ JETP 85 (1997) 1063.         [ Links ]

7. C. Romero-Salazar and F. Pérez-Rodríguez, Appl. Phys. Lett. 83 (2003) 5256.         [ Links ]

8. J.R. Clem, Phys. Rev. B 83 (2011) 214511 .         [ Links ]

9. D.-X. Chen and R. B. Goldfarb, J. Appl. Phys. 66 (1989) 2489.         [ Links ]

10. T. H. Johansen and H. Bratsberg, J. Appl. Phys. 77 (1995) 3945.         [ Links ]

11. Z. Kozioł, J. J. M. Franse, P. F. de Châtel, and A. A. Menovsky, Phys. Rev. B 50 (1994) 15978.         [ Links ]

12. C. Romero-Salazar and F. Pérez-Rodríguez, Supercond. Sci. Technol. 16 (2003) 1273.         [ Links ]

13 . Ming Xu, Donglu Shi, and Ronald F. Fox, Phys. Rev. B 42 (1990) 10773.         [ Links ]

14. M. Tinkham, Introduction to Superconductivity (USA: McGraw-Hill, 1996). p. 148-187.         [ Links ]

15. Ernst Helmut Brandt, Rep. Prog. Phys. 58 (1995) 1465.         [ Links ]

16. C. Romero-Salazar, F. Morales, R. Escudero, A. Durán and O.A. Hernández-Flores Phys. Rev. B 76 104521 (2007).         [ Links ]

17. C. Romero-Salazar and F. Pérez-Rodríguez, Physica C 404 (2004) 317-321.         [ Links ]

18. C. Romero-Salazar, L.D. Valenzuela-Alacio, A.F. Carballo-Sánchez, and F. Pérez-Rodríguez, J. Low Temp. Phys. 139 (2005).         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License