SciELO - Scientific Electronic Library Online

 
vol.58 número6Optimization of a cubic equation of state and van der Waals mixing rules for modeling the phase behavior of complex mixturesAplicación del Método Dobson a la estimación del ozono total utilizando un radiómetro ultravioleta índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.58 no.6 México dic. 2012

 

Instrumentación

 

TiO2 and Al2O3 ultra thin nanolaminates growth by ALD; instrument automation and films characterization

 

H. Tiznado*, D. Domínguez, W. de la Cruz, R. Machorro, M. Curiel and G. Soto

 

Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana-Ensenada, Ensenada, 22860, Baja California, México.*CNyN-UNAM, P.O. Box 439036, San Ysidro, CA, 92143-9036, USA. Tel: +52+ 646+1744602, Fax: +52+ 646+1744603

 

Recibido el 28 de octubre de 2011
Aceptado el 30 de agosto de 2012

 

Abstract

We report on the development of a fully operational atomic layer deposition (ALD) system. This system is computer-controlled and can deposit multilayered systems without user intervention. We describe the design of manifold, reaction chamber and exhaust. Additionally we give some features of the automatization software and electronics. To evaluate the ALD performance we used as precursor trymethyl aluminum (TMA) and tetrakis (dimethylamino) titanium (TDMAT) to deposit Al2O3 and TiO2, respectively, in nanolaminated film structures. The thicknesses and composition of the films are precisely controlled, as determined by spectroscopic ellipsometry, and the nanolaminates have a sharp interface as indicated by Auger depth profile.

Keywords: Atomic layer deposition; nanolaminates; instrumentation; automation; ellipsometry.

 

PACS: 07.30.Kf; 77.84.Bw

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This work was financially supported by CONACyT grants #83275 and #82984, and DGAPAIN114209-3. We acknowledge the technical assistance of A. Tiznado, E. Medina, J. Díaz and P. Pizá.

 

References

1. H.S. Nalwa, Handbook of Thin Films Materials, Deposition and Processing of Thin Films Vol. 1 (Academic Press 2002). pp. 103.         [ Links ]

2. W. Li, Z. Chen, R.N. Premnath, B. Kabius, and O. Auciello Journal of Applied Physics 110 (2011) 024106-1-024106-8.         [ Links ]

3. M. Leskela, M. Ritala, ALD precursor chemistry: Evolution and future challenges, Journal De Physique IV 9 (1999) 837-852.         [ Links ]

4. H. Tiznado and F. Zaera, Journal of Physical Chemistry B 110 (2006) 13491-13498.         [ Links ]

5. S.K. Kim, S.W. Lee, C.S. Hwang, Y.S. Min, J.Y. Won, J. Jeong, Journal of the Electrochemical Society 153 (2006) F69-F76.         [ Links ]

6. S. Lee, H. Jeon, Electronic Materials Letters 3 (2007) 17-21.         [ Links ]

7. J.W. Elam, M. Schuisky, J.D. Ferguson, and S.M. George, Thin SolidFilms 436 (2003) 145-156.         [ Links ]

8. W.J. Maeng and H. Kim, Electrochemical and Solid State Letters 9 (2006) G191-G194.         [ Links ]

9. Q. Xie et al, Journal of Applied Physics 102 (2007) 083521-1-083521-6.         [ Links ]

10. J.A. Woollam Co., (Guide to Using WVASE32™, Inc., 1997).         [ Links ]

11. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).         [ Links ]

12. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons