SciELO - Scientific Electronic Library Online

 
vol.58 issue5Diabatic quantum gatesVibrometer based on a self-mixing effect interferometer author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.58 n.5 México Oct. 2012

 

Investigación

 

A density oscillator model

 

A. Hubardª, C. Málagab, H. Arceb, and H. Gonzálezb

 

ª Benjamin Levich Institute, City College of CUNY, 140th Street and Convent Avenue, New York, N.Y. 10031, USA.

b Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, D.F. Mexico.

 

Recibido el 12 de junio de 2012;
Aceptado el 9 de agosto de 2012

 

Abstract

We present a model equation describing the behavior of a density oscillator and a set of experiments to test the model. The system consists of a cup containing salty water with an orifice in its base, partially submerged in an outer vessel filled with fresh water. Such a setup produces an oscillatory flow of water through the orifice. The density oscillator is an oscillatory system that shares common features with more complex systems with a stable limit cycle. Although a Rayleigh equation has been used as a model equation for these systems, we propose a different approach based on the integration of the hydrodynamic equations on a streamline. The model reproduces the experimental oscillation and predicts the period as a function of the physical parameters. Phase resetting curves observed in experiments under external biphasic excitation can be reproduced by the model.

Keywords: Density oscillator; saline oscillator; non linear oscillators.

 

PACS: 47.20.Bp; 82.40.Bj

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

We want to thank Michel Guevara for his revision and valuable comments. Jaime Garcia for his support with the experimental setup; Alicia Falcon and Araceli Torres for their help with data acquisition. This work was partially funded by PAPIIT-UNAM IN118611.

 

References

1. S. Nakata, K. Miyazaki, S. Izuhara, H. Yamaoka, and D. Tanaka, J. Phys. Chem. 113 (2009) 6876.         [ Links ]

2. A. Ijspeert, J. Nakanishi and S. Schaal, Learning rhythmic movements by demonstration using nonlinear oscillators, in: (Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems).         [ Links ]

3. N. Loeuille and M. Ghil, BMC Ecology 4 (2004) 217.         [ Links ]

4. A. Ijspeert, Neural Networks 21 (2008) 642.         [ Links ]

5. J. Hallinan and J. Wiles, Evolving genetic regulatory networks using an artificial genome., in: 2nd Asia-Pacfic Bioinformatics Conference (APBC2004).         [ Links ]

6. M. Takinoue, New Generation Computing 27 (2009) 107.         [ Links ]

7. M. R. Guevara and L. Glass, J. Math. Biol. 14 (1982) 1.         [ Links ]

8. L. Glass, Nonlinear Dynamics in Physiology and Medicine (Springer- Verlag, New York, 2003) Chapter: Resetting and entraining biological rhythms.         [ Links ]

9. H. Gonzalez, H. Arce and M. R. Guevara, Phys. Review E 78 (2008) 036217.         [ Links ]

10. S. Martin, Geophysical Fluid Dynamics (Gordon and Breach Science Publishers, 1970) Chapter: A Hydrodynamic Curiosity: the Salt Oscillator.         [ Links ]

11. K. Yoshikawa, N. Oyama, M. Shoji and S. Nakata, Am. J. Phys. 59 (1991) 137.         [ Links ]

12. K. Yoshikawa, S. Nakata, M. Yamanaka and T. Waki, J. of Chemical Education 66 (1989) 205.         [ Links ]

13. S. Nakata, T. Miyata, N. Ojima and K. Yoshikawa, Physica D 115 (1998) 313.         [ Links ]

14. K. Yoshikawa, K. Fukunaga, and M. Kawakami, Chem. Phys. Lett. 174 (1990) 203.         [ Links ]

15. K. Miyakawa and K. Yamada, Physica D 151 (2001) 217.         [ Links ]

16. K. Miyakawa and K. Yamada, Physica D 127 (1999) 177.         [ Links ]

17. M. Okamura and K. Yoshikawa, Phys. Review E 61 (2000) 2445.         [ Links ]

18. S. Upadhyay, A. K. Das, V. Agarwala and R. C. Srivastava, Langmuir 8 (1992) 2567.         [ Links ]

19. R. P. Rastogi, R. C. Srivastava, and S. Kumar, J. Colloid Interface Sci. 283 (2005) 139.         [ Links ]

20. J. Dempster, Computer Analysis of Electrophysical Signals (Academic Press, San Diego, 1993)        [ Links ]

21. M. R. Guevara and A. Shrier, Ann. N. Y. Acad. Sci. 591 (1990) 11.         [ Links ]

22. P. Alfredsson and T. Lagerstedt, Physics of fluids 24 (1981) 10.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License