SciELO - Scientific Electronic Library Online

 
vol.58 número5Fluctuation-induced conductivity of polycrystalline Gd1-χCeχBa2Cu3O7-δ superconductorThe effect of grain refinement on the mechanical properties of a micro alloyed steel índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.58 no.5 México oct. 2012

 

Investigación

 

Raman and structural studies on the high-temperature regime of the KH2PO4-NH4H2PO4 system

 

J.F. Juradoª*, C. Vargas-Hernándezª, and R.A. Vargasb

 

aLaboratorio de Propiedades Ópticas de Materiales (POM), Departamento de Física y Química, Universidad Nacional de Colombia, A.A 127, Manizales, Colombia.

bDepartamento de Física, Universidad del Valle, A.A. 25360, Cali, Colombia.

 

Recibido el 18 de abril de 2012;
Aceptado el 24 de julio de 2012

 

Abstract

We have studied the high-temperature phase transition (HTPT) of crystalline potassium and ammonium dehydrogen phosphates and solid solutions of them with composition (1-x) KH2 PO4 + x NH4 H2 PO4 (KADPx, for x =0.0, 0.1, 0.2, 0.3, 0.4, 0.6 and 1.0), by means of X-ray diffraction analysis at room temperature and in situ Raman spectroscopy as function of temperature. Analysis of the Raman spectra made it possible to monitor the temperature dependence of vibrational bands associated to structural changes taking place during a proposed partial dehydration reaction that starts to take place at a characteristic temperature Tp and tends to increase above it. This assignment is supported using characteristic vibrational bands of phosphates and polyphosphates (produced as a consequence of the partial dehydration reaction of the crystals above Tp). The presence of the polyphosphate vibrational bands assigned to the stretch vibration of its PO2 species (at about 1120 cm_1for pure KDP) accompanied by a broad band assigned to P-O-P backbone vibrations (at about 713 cm_1for pure KDP) [14] become evident at temperature higher than Tp depending on the composition of KADPx.

Keywords: X-ray diffraction; ionic crystals; vibrational states in crystals.

 

PACS: 61.05.cp; 64.70.kp; 63.20.-e

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

The authors wish to acknowledge the support of DIMA (Direccion de investigación, Universidad Nacional de Colombia, Sede Manizales) to research project.

 

References

1. P. Kumaresan, S. Moorthy Babu, and P.M Anbarasan, J. Crystal Growth 310 (2008) 1999-2004.         [ Links ]

2. Ferroelectrics, special issue on KH2PO4-type ferro- and anti-ferroelectrics 71-72 (1987)        [ Links ]

3. D.A. Boysen, T. Uda, C.R.I. Chisholm, and S.M. Haile, Science 303 (2004) 68-70.         [ Links ]

4. T. Uda and S.M. Haile, Electrochem. Solid State Lett. 8 (2005) A245-A246.         [ Links ]

5. M. Royle, J. Chao, and S.W. Martin, J. Non-Crys. Solids 279 (2001) 97-109        [ Links ]

6. Zikun Li, and Tongbor Tang, Solid State Ionics 211 (2012) 34-41        [ Links ]

7. Y. Imry, I. Pelah and E.J. Wiener, J. Chem Phys. 43 (1965) 2332-2340,         [ Links ] A.I. Baranov, V.P. Khiznichenko and Na. A. Shuvalov, ferroelectrics 100 (1989) 135-141        [ Links ]

8. K.E. Lee, J. Phys. Chem. Solids 57 (1996) 333-342        [ Links ]

9. R. Blinc, V. Dimic, G. Lahaynar, J. Stepisnik, S. Zumer, and N. Vene, J. Chem. Phys. 49 (1968) 4996-5000.         [ Links ]

10. J.Y. Nicholson and J.F. Soest, J. Chem. Phys. 60 (1974) 715-716.         [ Links ]

11 . R. S. Viswanath, and P. J. Miller, Solid State Commun. 29 (1979) 163-166.         [ Links ]

12. R.H. Chen, Chen-Chieh Yen, C.S. Shern, and T. Fukami, Solid State Ionics 177 (2006) 2857-2864        [ Links ]

13. B.-K. Choi, J. Phys. Chem. Solids 56 (1995) 1023-1030        [ Links ]

14. B.-K. Choi, and J. Korean, Phys. Soci. 32 (1998) s515-s517        [ Links ]

15. H.-J- de Jager, and L.C. Prinsloo, Thermochimica Acta 376 (2001) 187-196.         [ Links ]

16. D.P. Pereira et al., Solid State Commun. 152 (2012) 1023-1026        [ Links ]

17. Y. Kawahata, and Y. Tomina, Solid State Commun. 145 (2008) 218-222        [ Links ]

18. D. Xu, and Dongfeng Xue, J. Crys. Growth 286 (2006) 108-113        [ Links ]

19. J. A. Subramony, S. Lovell, and B. Kahk, Chem. Mate. 10 (1998) 2053-2057,         [ Links ] J. A. Subramony, B. J. Marquart, J. W. Macklin, and Bart Kahr, Chem. Matter. 11 (1999) 1312-1316.         [ Links ]

20. W.H. Baur, Acta Crystallographic B 29 (1973) 2726-2731        [ Links ]

21. G. W. Lu, X. Sun, Crys. Res. Technol. 37 (2002) 93-99,         [ Links ] G. Lu, C. Li, W. Wang, Z. Wang, J. Guan, H. Xia, Mater. Science and Eng. B 116 (2005) 47-53        [ Links ]

22. E. Ortiz, R.A. Vargas and B.-E. Mellander, J. Phys Chem. Solids 59 (1998) 305-310        [ Links ]

23. E. Torijano, R.A Vargas, J.E. Diosa, R. Cataño and B.-E. Mellander, Solid State Ionics 136-137 (2000) 979-984        [ Links ]

24. V.V. Martsinkevich, and V.G. Ponomareva, Solid State Ioncs. (2012), doi:10.1016/j.ssi.2012.04.016(In press)        [ Links ]

 

Note

* Author to whom correspondence should be addressed: jfjurado@unal.edu.co

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons