SciELO - Scientific Electronic Library Online

 
vol.58 issue4Single shot phase shifting techniques for 4D radial slope measurements of transparent samplesScattering of a ball by a bat in the limit of small deformation author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.58 n.4 México Aug. 2012

 

Investigación

 

Fractional mechanical oscillators

 

J.F. Gómez-Aguilar a, *, J.J. Rosales-Garcíab, J.J. Bernal-Alvaradoa, T. Córdova-Fragaa and R. Guzmán-Cabreraa

 

a Departamento de Física, División de Ciencias e Ingenierías Campus León, Universidad de Guanajuato, Lomas del Bosque s/n, Lomas del Campestre, León Guanajuato, México,e-mail: jfga@fisica.ugto.mx, bernal@fisica.ugto.mx, teo@fisica.ugto.mx

b Departamento de Ingeniería Eléctrica, División de Ingenierías Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago, km. 3.5 + 1.8 km, Comunidad de Palo Blanco, Salamanca Guanajuato México, e-mail: rosales@ugto.mx, guzmanc@ugto.mx *Tel: +52 (477) 788-5100 ext. 8449.

 

Recibido el 15 de febrero de 2012;
aceptado el 21 de mayo de 2012

 

Abstract

In this contribution we propose a new fractional differential equation to describe the mechanical oscillations of a simple system. In particular, we analyze the systems mass-spring and spring-damper. The order of the derivatives is 0 < γ ≤ 1. In order to be consistent with the physical equation a new parameter σ is introduced. This parameter characterizes the existence of fractional structures in the system. A relation between the fractional order time derivative γ and the new parameter a is found. Due to this relation the solutions of the corresponding fractional differential equations are given in terms of the Mittag-Leffler function depending only on the parameter γ. The classical cases are recovered by taking the limit when γ = 1.

Keywords: Fractional calculus; mechanical oscillators; caputo derivative; fractional structures.

 

Resumen

En esta contribución se propone una nueva ecuación diferencial fraccionaria que describe las oscilaciones mecánicas de un sistema simple. En particular, se analizan los sistemas masa-resorte y resorte-amortiguador. El orden de las derivadas es 0 < γ≤ 1. Para mantener la consistencia con la ecuación física se introduce un nuevo parámetro σ. Este parámetro caracteriza la existencia de estructuras fraccionarias en el sistema. Se muestra que existe una relación entre el orden de la derivada fraccionaria γ y el nuevo parámetro a. Debido a esta relación las soluciones de las correspondientes ecuaciones diferenciales fraccionarias estan dadas en terminos de la función de Mittag-Leffler, cuyas soluciones dependen solo del orden fraccionario γ. Los casos clásicos son recuperados en el límite cuando γ = 1.

Descriptores: Cálculo fraccionario; oscilaciones mecanicas; derivada de caputo; estructuras fraccionarias.

 

PACS: 45.10.Hj; 46.40.Ff; 45.20.D-

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This research was supported by CONACYT and PROMEP under the Grant: Fortalecimiento de CAs., 2011, UGTO-CA-27.

 

References

1. H. Nasrolahpour, Prespacetime Journal. Vol.3 (2012) 99-108.         [ Links ]

2. K.B. Oldham and J. Spanier, The Fractional Calculus. (Academic Press, New York, 1974).         [ Links ]

3. K.S. Miller, and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. (Wiley, New York, 1993).         [ Links ]

4. S.G. Samko, A.A. Kilbas, and O.I. Marichev Fractional Integrals and Derivatives, Theory and Applications (Gordon and Breach, Langhorne, PA, 1993).         [ Links ]

5. I. Podlubny Fractional Differential Equations. (Academic Press, New York, 1999).         [ Links ]

6. A.A. Rousan et al., Fractional Calculus and Applied analysis 9 (2006)33-41.         [ Links ]

7. O.P Agrawal, J.A. Tenreiro-Machado, and I. Sabatier Fractional Derivatives and Their Applications: Nonlinear Dynamics. 38. (Springer-Verlag, Berlin, 2004).         [ Links ]

8. R. Hilfer Applications of Fractional Calculus in Physics. (World Scientific, Singapore, 2000).         [ Links ]

9. B.J. West, M. Bologna, and P. Grigolini Physics of Fractional Operators. (Springer-Verlag, Berlin, 2003).         [ Links ]

10. R.L. Magin Fractional calculus in Bioengineering. (Begell House Publisher, Rodding, 2006).         [ Links ]

11. M. Caputo, and F. Mainardi Pure and Applied Geophysics 91 (1971) 134.         [ Links ]

12. S. Westerlund Causality, report no. 940426, (University of Kalmar, 1994).         [ Links ]

13. D. Baleanu, Z.B. Gunvenc, and J.A. Tenreiro Machado New Trends in Nanotechnology and Fractional Calculus Applications. (Springer, 2010).         [ Links ]

14. B. Mandelbrot The Fractal Geometry of Nature (San Francisco, CA: Freeman, 1982).         [ Links ]

15. M. Caputo, and F. Mainardi, Pure and Applied Geophysics 91 (1971) 134-147.         [ Links ]

16. E. Ryabov Ya., and A. Puzenko Physical Review B 66 (2002) 184201.         [ Links ]

17. M. Naber, International Journal of Differential Equations. (Hindawi Publishing Corporation, 2010).         [ Links ]

18. A.A. Stanislavsky, Physical Review E 70 (2004) 051103-1 051103-6.         [ Links ]

19. I. Podlubny, Fract. Calc. App. Anal. 5 (2002) 367-386.         [ Links ]

20. M. Moshre-Torbati, and J.K. Hammond, Physical and geometrical interpretation of fractional operators 335B (1998) 1077-1086.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License