SciELO - Scientific Electronic Library Online

 
vol.58 issue3Modulation of coherence and polarization using nematic 90°-twist liquid-crystal spatial light modulatorsParaxial theory of sum-frequency generation by sideways alignment and phase-matching in uniaxial crystals author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.58 n.3 México Jun. 2012

 

Carta

 

On maximizing positive Lyapunov exponents in a chaotic oscillator with heuristics

 

L.G. de la Fraga1, E. Tlelo-Cuautle2, V.H. Carbajal-Gómez2, J.M. Muñoz-Pacheco3

 

1 Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Computer Science Department, Av. IPN 2508, 07360 México City, México, e-mail: fraga@cs.cinvestav.mx.

2 Instituto Nacional de Astrofísica, Óptica y Electrónica, Electronics Department, Luis Enrique Erro 1, Tonantzintla, Puebla, 72840, México.

3 Benemérita Universidad Autonóma de Puebla, Facultad de Ciencias de la Electrónica, Ciudad Universitaria, Av. San Claudio y 18 Sur, 72570 Puebla, México.

 

Recibido el 1 de febrero de 2012;
aceptado el 9 de abril de 2012

 

Abstract

A positive Lyapunov exponent indicates the presence of chaos in a dynamical system. In this manner, computing its maximum value guarantees the unpredictability grade of a chaotic system. In this investigation we present the application and comparison of two heuristics: Differential Evolution (DE) and Particle Swarm Optimization (PSO), to maximize the positive Lyapunov exponent in a multi-scroll chaotic oscillator based on saturated nonlinear function series. The computed results show that DE and PSO algorithms are suitable to maximize the positive Lyapunov exponent of truncated coefficients over the continuous spaces. In addition, the phase diagrams show that for a small positive Lyapunov exponent the attractors are well defined, while for its maximum value, the attractors are not well appreciated because the unpredictability grade of the chaotic oscillator is increased.

Keywords: Chaotic oscillator; Multi-scroll attractor; Lyapunov exponent; Saturated function series; PWL function; Evolutionary algorithms.

 

Resumen

Un exponente positivo de Lyapunov indica la presencia de caos en un sistema dinámico. De esta manera, el cálculo de un valor máximo garantiza el grado de impredicibilidad de un sistema caótico. En esta investigación presentamos la aplicación y comparación de dos heurísticas: evolución diferencial (DE) y optimización por enjambre de partículas (PSO), para maximizar el exponente positivo de Lyapunov en un oscilador caótico de múltiples enrollamientos basado en series de funciones saturadas. Los resultados calculados muestran que DE y PSO son adecuados para maximizar el exponente positivo de coeficientes truncados sobre espacios continuos. Adicionalmente, los diagramas de fase muestran que para un exponente positivo de Lyapunov pequeño los atractores están bien definidos, mientras que para su valor máximo, los atractores no se aprecian bien porque el grado de impredicibilidad del oscilador caótico está aumentado.

Descriptores: Oscilador caótico; atractor de múltiples enrollamientos; exponente de Lyapunov; serie de funciones saturadas; función PWL; algoritmos evolutivos.

 

PACS: 05.45.Pq; 05.45.Pq; 84.30.Ng; 07.50.Ek; 84.30.-r; 01.50.Pa

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This work is partially supported by CONACyT-México under grant 131839-Y.

 

References

1. J. Lu and G. Chen, International Journal of Bifurcation and Chaos 16 (2006) 775-858.         [ Links ]

2. J. Lu, S. Yu, H. Leung, and G. Chen, IEEE Transactions on Circuits and Systems I 56 (2006) 149-165.         [ Links ]

3. J.M. Muñoz-Pacheco and E. Tlelo-Cuautle, Electronic Design Automation of Multi-scroll Chaos Generators. (Bentham Science Publishers Ltd, USA, 2010).         [ Links ]

4. R. Trejo-Guerra, E. Tlelo-Cuautle, J.M. Muñoz-Pacheco, C. Sánchez-López, and C. Cruz-Hernández, International Journal of Nonlinear Sciences & Numerical Simulation 11 (2010) 903- 910.         [ Links ]

5. V.H. Carbajal-Gómez, E. Tlelo-Cuautle, R. Trejo-Guerra, C. Sánchez-López, and J.M. Muñoz-Pacheco, Nonlinear Science Letters B: Chaos, Fractal and Synchronization 1 (2011) 37-42.         [ Links ]

6. J.M. Muñoz-Pacheco, W. Campos-Lopez, E. Tlelo-Cuautle, and C. Sánchez-López, Trends in Applied Sciences Research 7 (2012) 168-174.         [ Links ]

7. R. Trejo-Guerra, E. Tlelo-Cuautle, C. Sánchez-López, J.M. Muñoz-Pacheco, and C. Cruz-Hernández, Rev. Mex. Fis. 54 (2010) 268-274.         [ Links ]

8. R. Trejo-Guerra, E. Tlelo-Cuautle, J.M. Jiménez-Fuentes, J.M. Muñoz-Pacheco, and C. Sánchez-López, Multiscroll floating gate based integrated chaotic oscillator (International Journal of Circuit Theory and Applications, 2011).         [ Links ]

9. L. Dieci, Journal of Dynamics and Differential Equations 14 (2002) 697-717.         [ Links ]

10. T.S. Parker and L.O. Chua, Practical Numerical Algorithms for Chaotic Systems (Springer-Verlag, NY, 1989).         [ Links ]

11. G.H. Golub and C.V. Loan, Matrix Computations (The Johns Hopkins University Press, 3rd ed, 1996).         [ Links ]

12. R. Storn and K. Price, Journal of Global Optimization 11 (1997) 341-359.         [ Links ]

13. M. Clerc, Particle Swarm Optimization (ISTE Ltd. UK, 2006).         [ Links ]

14. M. Clerc, Standard particle swarm optimisation (2011-07-13 version). p. 1-14. Available at clerc.maurice.free.fr/pso/SPSOdescriptions.pdf.         [ Links ]

15. D. Bratton and J. Kennedy. Defining a standard for particle swarm optimization (In Swarm Intelligence Symposium, 2007. SIS 2007. IEEE, pages 120 -127, april 2007).         [ Links ]

16. L. Gamez-Guzman, C. Cruz-Hernández, R.M. Lopez- Gutierrez, and E.E. Garcia-Guerrero, Rev. Mex. Fis. 54 (2008) 299- 305.         [ Links ]

 

Nota

i. The program was compiled with gcc and -O2 flags, over a SUNz20v machine with two AMD Opteron 248 microprocessors.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License