SciELO - Scientific Electronic Library Online

vol.58 issue22D radial distribution function of siliceneOn renormalizability of a non-linear abelian gauge model author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.58 n.2 México Apr. 2012




Growth and characterization of β–InN films on MgO: the key role of a β–GaN buffer layer in growing cubic InN


H. Navarro–Contreras, M. Pérez Caro, A.G. Rodríguez, E. López–Luna, and M.A. Vidal


Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luís Potosí, Álvaro Obregón 64, San Luis Potosí, S.L.P. 78000, México.


Recibido el 16 de enero de 2012.
Aceptado el 9 de febrero de 2012.



Cubic InN samples were grown on MgO (001) substrates by gas source molecular beam epitaxy (GSMBE). In general, we find that InN directly deposited onto the MgO substrate results in polycrystalline or columnar films of hexagonal symmetry. We find that adequate conditions to grow the cubic phase of this compound require the growth of an initial cubic GaN buffer interlayer (β–tGaN) on the MgO surface. Subsequently, the growth conditions were optimized to obtain good photoluminescence (PL) emission. The resultant InN growth is mostly cubic, with very small hexagonal inclusions, as confirmed by X–ray diffraction (XRD) and scanning electron microscopy (SEM) studies. Good crystalline quality requires that the samples to be grown under rich Indium metal flux. The cubic β–tInN/GaN/MgO samples exhibit a high signal to noise ratio for PL at low temperatures (20 K). The PL is centered at 0.75 eV and persists at room temperature.

Keywords: A3. Molecular beam epitaxy; B2. semiconducting III–V materials; B1. nitrides; cubic indium nitride.


PACS: 61.05jh; 81.15Hi; 81.05Ea





The authors acknowledge the financial support from Consejo Nacional de Ciencia y Tecnología (CONACyT) through grants 152155, Mexico; from FAI–UASLP, and FRC–UASLP, as well as the access to the facilities of the Laboratorio Nacional de Nanomateriales–IPICYT, during the course of this research.



1. S. Nakamura, S. Pearton and G. Fasol, The Blue Laser Diode: The Complete Story (Berlin: Springer 2000).         [ Links ]

2. T.L. Tansley and C.P. Foley, J. Appl. Phys. 59 (1986) 3241.         [ Links ]

3. C. Wetzel, T. Takeuchi, S. Yamaguchi, H. Katoh, H. Amano, and I. Akasaki, Appl. Phys. Lett. 73 (1998) 1994.         [ Links ]

4. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, Hai Lu, W.J. Schaff, Yoshiki Saito, Yasushi Nanishi, Appl. Phys. Lett. 80 (2002) 3967.         [ Links ]

5. W. Walukiewicz, J.W. Ager III, K.M. Yu, Z. Liliental–Weber, J. Wu, S.X. Li, R.E. Jones and J.D. Denlinger, J. Phys. D: Appl. Phys. 39 (2006) R83.         [ Links ]

6. P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neuge–bauer, and M. Scheffler, Phys. Rev. B 77 (2008) 075202.         [ Links ]

7. S.K. O'Leary, B.E. Foutz, M.S. Shur, L.F. Eastmand, Solid State Commun. 150 (2010)2182.         [ Links ]

8. S.K. O'leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, and L.F. Eastman, J. Appl. Phys. 83 (1998) 826.         [ Links ]

9. S.K. O'Leary, B.E. Foutz, M.S. Shur, and L.F. Eastman, Appl. Phys. Lett. 88 (2006) 152113.         [ Links ]

10. V. M. Polyatov and F. Schwierz, Appl. Phys. Lett. 88 (2006) 032101.         [ Links ]

11. Y. Nanishi, Y.Saito, T. Yamaguchi, Jpn. J. Appl. Phys. 42 (2003) 2549.         [ Links ]

12. M. Pérez Caro, Alfredo Campos Mejía, A.G. Rodríguez, H. Navarro–Contreras, and M.A. Vidal, J. Crystal Growth. 311 (2009) 1302.         [ Links ]

13. Doctoral Thesis, M. Pérez Caro (in Spanish). (Universidad Autónoma de San Luís Potosí, Mexico August 2009), unpublished.         [ Links ]

14. I. Vurgaftman and J.R. Meyer, J. Appl. Phys. 94 (2003) 3675.         [ Links ]

15. H. Tsuchiya, K. Sunaba, S. Yonemura, T. Suemasu and F. Hasegawa, Jpn. J. Appl. Phys. 36 (1997) L1–L3.         [ Links ]

16. M.A. Moram and M.E. Vickers, Rep. Prog. Phys. 72 (2009) 036502.         [ Links ]

17. H. Pérez Ladrón de Guevara, A. Gaona–Couto, M.A. Vidal, J. Luyo Alvarado, M. Meléndez Lira and M. López–López, J. Phys. D: Appl. Phys. 35 (2002 1408).         [ Links ]

18. M. Pérez–Caro, A.G. Rodríguez, M.A. Vidal, and H. Navarro–Contreras, J. Appl. Phys. 108 (2010) 013507.         [ Links ]

19. P. Schley, R. Goldhahn, C. Napierala, G. Gobsch, J. Schörmann, D.J. As, K. Lischka, M. Feneberg, and K. Thonke, Semicond. Sci. Technol. 23, (2008) 055001.         [ Links ]

20. J. Schörmann, D.J. As, K. Lischka, P. Schley, R. Goldhahn, S.F. Li, W. Löffler, M. Hetterich, and H. Kalt, Appl. Phys. Lett. 89 (2006) 261903.         [ Links ]

21. M. Pérez–Caro, A.G. Rodríguez, M.A. Vidal, and H. Navarro–Contreras, J. Appl. Phys. 108 (2010) 013507.         [ Links ]

22. V. Y. Davydov et al., Phys. Status Solidi B 234 (2002) 787.         [ Links ]

23. P. Schley et al., Phys. Status Solidi b 246 (2007) 1177.         [ Links ]

24. T. Sasaoka, M. Mori, T. Miyazaki, and S. Adachi. J. Appl. Phys. 108 (2010) 063538.         [ Links ]

25. Q. X. Gao, T. Tanaka, M. Nishio, H. Ogawa, D. Pu, and W.Z. Shen. Appl. Phys. Lett. 86 (2005)231913.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License