SciELO - Scientific Electronic Library Online

 
vol.58 issue2Higher dimensional gravity and Farkas property in oriented matroid theoryGrowth and characterization of β-InN films on MgO: the key role of a β-GaN buffer layer in growing cubic InN author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.58 n.2 México Apr. 2012

 

Investigación

 

2D radial distribution function of silicene

 

M.R. Chávez–Castilloa,b, M.A. Rodríguez–Mezab, and L. Meza–Montesa

 

a Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J–48, Puebla, Pue. 72570 México.

b Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18–1027, México, D.F. 11801 México, e–mails: mchavez@ifuap.buap.mx; marioalberto.rodriguez@inin.gob.mx; lilia@ifuap.buap.mx

 

Recibido el 16 de agosto de 2011.
Aceptado el 13 de febrero de 12.

 

Abstract

Silicene is the counterpart of graphene and its potential applications as a part of the current electronics, based in silicon, make it a very important system to study. We perform molecular dynamics simulations and analyze the structure of a two dimensional array of Si atoms by means of the radial distribution function at different temperatures and densities. As a first approach, the Lennard–Jones potential is used and two sets of parameters are tested. We find that the radial distribution function does not change with the parameters and resembles the corresponding to the (111) surface of the FCC structure. The liquid phase appears at very high temperatures, suggesting a very stable system in the solid phase.

Keywords: Silicene; radial distribution function; molecular–dynamics.

 

Resumen

El siliceno es la contraparte del grafeno y sus potenciales aplicaciones en la electrónica actual, basada en el silicio, lo hacen un objeto de estudio muy importante. Realizamos simulaciones de dinámica molecular de un sistema bidimensional formado por átomos de Si, a diferentes temperaturas y densidades, analizando la estructura por medio de la función de distribución radial. Como primera aproximación, usamos el potencial de Lennard–Jones. Se encontró que utilizando dos conjuntos de parámetros diferentes, la función de distribución radial no cambia y se asemeja a la del plano (111) de la estructura FCC. La fase líquida aparece a muy altas temperaturas, sugiriendo un sistema muy estable en la fase sólida.

Descriptores: Siliceno; función de distribución radial; dinámica molecular.

 

PACS: 61.46.–w; 61.48.–c; 68.65.–k

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

L.M.M. thanks L.C. Lew Yan Voon for introducing her to the topic. Partially supported by CONACYT, Grant. CB–133251 and VIEP–BUAP.

 

References

1. H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl and R.E. Smal–ley, Nature 318 (1985) 162.         [ Links ]

2. S. Iijima and T. Ichihashi, Nature 363 (1993) 603.         [ Links ]

3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306 (2004) 666.         [ Links ]

4. A. H. Castro–Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81 (2009) 109.         [ Links ]

5. S. Das Sarma, Shaffique Adam, E.H. Hwang and Enrico Rossi, Rev. Mod. Phys. 83 (2011) 407.         [ Links ]

6. B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, and C. Loandri, B. Ealet and G. Le Lay, Appl. Phys. Lett. 96 (2010) 183102.         [ Links ]

7. S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin and S. Ciraci, Phys. Rev. Lett. 102 (2009) 236804.         [ Links ]

8. M. Houssa, G. Pourtois, V.V. Afanas'ev, and A. Stesmans, Appl. Phys. Lett. 97 (2010) 112106.         [ Links ]

9. S. Yu. Davydov, Physics of the Solid State 52 (2010) 184.         [ Links ]

10. K. Takeda and K. Shiraish, Phys. Rev. B 50 (1994) 14916; G.G. Guzman–Verri and L.C. Lew Yan Voon, Phys. Rev. B 76 (2007) 075131.         [ Links ]

11. P. De Padova, C. Loandri, S. Vizzini, C. Quaresima, P. Perfetti, B. Olivieri, H. Oughaddou, B. Aufray, and G. Le Lay, NanoLetters 8 (2008) 2299.         [ Links ]

12. S. Lebegue and O. Eriksson, Phys. Rev. B 79 (2009) 115409.         [ Links ]

13. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet and B. Aufray, Appl. Phys. Lett. 97 (2010) 223109.         [ Links ]

14. A. Fleurence, R. Friedlein, Y. Wang and Y. Yamada–Takamura, Experimental evidence for silicene on ZrB2 (0001), Symposium on Surface and Nano Science 2011 (SSNS'11), Shizukuishi: Japan (2011).         [ Links ]

15. Boon K. Teo and X.H. Sun, Chem. Rev. 107 (2007) 1454.         [ Links ]

16. R.Q. Zhang, S.T. Lee, Chi–Kin Law, Wai–Kee Li, Boon K. Teo, Chem. Phys. Lett. 364 (2002) 251.         [ Links ]

17. S.B. Fagan, R. Motaa, R.J. Baierle, G. Paiva, A.J.R. da Silva, A. Fazzio, J. Mol. Struct. (Theochem) 539 (2001) 101.         [ Links ]

18. D. Jose and A. Datta , Phys. Chem. Chem. Phys. 13 (2011) 7304.         [ Links ]

19. A. Ince and S. Erkoc, Comp. Mater. Sci. 50 (2011) 865.         [ Links ]

20. F. H. Stillinger and T. A. Weber, Phys. Rev. 31 (1985) 5262.         [ Links ]

21. A.E. Galashev, V.A. Polukhin, I.A. Izmodenov and O.R. Rakhmanova, Glass Physics and Chemistry 33 (2007) 86.         [ Links ]

22. Web–Site: http://www.astro.inin.mx/mar/nagbody.         [ Links ]

23. M.A. Rodríguez–Meza, J. Terrones–Portas y A.K.L. Silva–Montes, Rev. Mex. Fis. (Submmitted 2012).         [ Links ]

24. D.C. Rapaport, The Art of Molecular Dynamics Simulation, (Cambridge University Press, New York, 1995).         [ Links ]

25. Ioffe Physical Technical Institute, New Semiconductor Materials: Characteristics and Properties: Physical Properties of Semiconductors, Ioffe Institute 1998–2001, (14 Apr. 2011). Web–Site: http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html.         [ Links ]

26. K. V. Zakharchenko, A. Fasolino, J.H. Los and M.I. Katsnelson, J. Phys.: Condens. Matter 23 (2011) 202202.         [ Links ]

27. F. Bechstedt, Principles of Surface Physics (Springer–Verlag, Germany, 2003).         [ Links ]

28. J.Q. Broughton and G.H. Gilmer, J. Chem. Phys. 79 (1983) 5105.         [ Links ]

29. A. Fasolino, J.H. Los and M.I. Katsnelson, Nature Mater. 6 (2007) 858.         [ Links ]

30. H. Zhao, K. Min and N.R. Aluru, Nano Lett. 9 (2009) 3012.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License