SciELO - Scientific Electronic Library Online

 
vol.58 número1Computer simulation of the energy dynamics of a sinusoidally perturbed double sine-Gordon equation: an application to the transmission of wave signalsElectronic band structure of platinum low-index surfaces: an ab initio and tight-binding study. II índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.58 no.1 México feb. 2012

 

Investigación

 

Structural and electronic properties of RuN/GaN superlattices: a first–principles study

 

C. Ortega López1, R. González–Hernández2 and J. Arbey Rodríguez3

 

1 Grupo Avanzado de Materiales y Sistemas Complejos–GAMASCO, Departamento de Física, Universidad de Córdoba, Monteria, Colombia.

2 Grupo de Investigación en Física Aplicada. Departamento de Física, Universidad del Norte, Barranquilla, Colombia, e–mail: rhernandezj@uninorte.edu.co

3 Grupo de Estudio de Materiales – GEMA, Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia. e–mail: jarodriguezm@bt.unal.edu.co

 

Recibido el 17 de octubre de 2011.
Aceptado el 5 de diciembre de 2011.

 

Abstract

In this work, we investigate the structural and electronic properties of RuN/GaN superlattices, using first–principles calculations within density functional theory (DFT) and generalized gradient approximation (GGA). We have employed the full potential linearized augmented plane waves (FP–LAPW) method as implemented in the WIEN2k code. The 1×1, 1×2, 1×3 and 1×4 RuN/GaN superlattices are studied in the wurtzite phase, which is the most stable structure of the GaN. In order to determine the best parameters, we have optimized the total energy as a function of: (i) the unit cell volume, (ii) the c/a ratio and (iii) the z–coordinate of Ga and Ru atoms. Lattices constant, bulk moduli, cohesive and formation energies are reported as a function of the period for each RuN/GaN superlattices, and trends are discussed. On the other hand, a study of the density of states show that the superlattices present a metallic behavior. The results suggest that the RuN/GaN superlattices can be used as compounds for the fabrication of semiconductor–metal–semiconductor or semiconductor–metal devices.

Keywords: Superlattices; nitrides; DFT; LAPW.

 

PACS: 68.65.Cd; 77.84.Bw; 71.15.Mb; 71.15.Ap

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997).         [ Links ]

2. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Appl. Phys. Lett. 67 (1995) 1868.         [ Links ]

3. H. Bar–Ilan, S. Zamir, O. Katz, B. Meyler, and J. Salzman,Materials Science and Engineering A 302 (2001) 14.         [ Links ]

4. R.J. Trew, M.W. Shin and V. Gatto, Solid–State Electronics 41 (1997) 1561.         [ Links ]

5. S.J. Pearton, F. Ren, A.P. Zhang and K.P. Lee, Materials Science and Engineering: R. Reports 3 (2000) 55.         [ Links ]

6. R. de Paiva, J.L.A. Alves, R.A. Nogueira, J.R. Leite and L.M.R. Scolfaro, Brazilian Journal of Physics 34 (2004) 647.         [ Links ]

7. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science 287 (2000) 1019.         [ Links ]

8. T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A.H. Mac–Donald, Rev. Mod. Phys. 78 (2006) 809.         [ Links ]

9. C.K. Ramesh, V. Rajagopal–Reddy and K.S.R., Kotteswara Rao, J. Matter Sci: Matter Electron. 17 (2006) 999.         [ Links ]

10. C. Ortega, W. López and J.A. Rodríguez, Applied Surface Science 255 (2009) 3837.         [ Links ]

11. E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Bardo, G. Fi–quet, H.K. Mao and R. Hemley, Nat. Mater. 3 (2004) 294.         [ Links ]

12. J. Crowhurst, A. Goncharov, B. Sadigh, C. Evans, P. Morrall, J. Ferreira and A.J. Nelson, Science 311 (2006) 1275.         [ Links ]

13. J. Uddin and G. Scuseria, Phys. Rev. B 72 (2005) 35101.         [ Links ]

14. M.B. Kanoun and S. Goumri–Said, Physics Letters A 362 (2007) 73.         [ Links ]

15. M.G. Moreno–Armenta, J. Díaz, A. Martínez–Ruiz, and G. Soto, J of Phys. andChem. Solid. 68 (2007) 1989.         [ Links ]

16. Q.Z. Xue, Q.K. Xue, R.Z. Bakhtizin, Y. Hasegawa, I.S.T. Tsong, T. Sakurai and T. Ohno, Phys. Rev. B. 59 (1999) 12604.         [ Links ]

17. J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.         [ Links ]

18. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology 2009) . ISBN 3–9501031–1–2        [ Links ]

19. H.J. Monkhorst and J.D. Pack, Phys. Rev. 13 (1976) 5188.         [ Links ]

20. F.D. Murnaghan, Proc. Nat. Acad. Sci. 30 (1944) 244.         [ Links ]

21. Y.E. Kitaev, M.F. Limonov, P. Tronc and G.N. Yushin, Phys. Rev. B. 57 (1998) 14209.         [ Links ]

22. A. Lakdja, B. Bouhafs and P. Ruterana, Computational Materials Science 33 (2005) 157.         [ Links ]

23. M.G. Moreno–Armenta, L. Mancera, and N. Takeuchi, Phys. Stat. Sol. (b) 238 (2003) 127.         [ Links ]

24. R. González, W. López, and J.A. Rodríguez, Solid State Communications. 144 (2007) 109.         [ Links ]

25. H. Schulz and K.H. Thiemann, Solid State Commun. 23 (1977) 815.         [ Links ]

26. R.F. Zhang and S. Veprek, Acta Materialia 55 (2007) 4615.         [ Links ]

27. A. Zoroddu, F. Bernardini, P. Ruggerone and V. Fiorentini, Phys. Rev. B 64 (2001) 045208.         [ Links ]

28. K. Kim, W.R.L. Lambrecht and B. Segall, Phys. Rev. B. 53 (1996) 1631.         [ Links ]

29. C. Stamp and C.G.V. de Walle, Phys. Rev. B. 59 (1999) 5521.         [ Links ]

30. R. de Paiva, R.A. Nogueira and J.L. Alves, J. Phys.: Condens. Matter 18 (2006) 8589.         [ Links ]

31. K. Lawniczak–Jablonska etal., Phys. Rev. B 61 (2000) 16623.         [ Links ]