SciELO - Scientific Electronic Library Online

 
vol.58 número1Complex dynamics and chaos in commutable pendulumNatural convection and surface thermal radiation in a tilted open shallow cavity índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.58 no.1 México feb. 2012

 

Investigación

 

Algorithm to compute the electric field gradient tensor in ionic crystals

 

J.J. Hernández–Gómez, V. Marquina and R.W. Gómez

 

Facultad de Ciencias, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria, D.F., México, 04510, México.

 

Recibido el 19 de septiembre de 2011.
Aceptado el 25 de noviembre de 2011.

 

Abstract

A simple algorithm and a computational program to numerically compute the electric field gradient and the concomitant quadrupolar nuclear splitting is developed for an arbitrary ionic crystal. The calculations are performed using a point charge model. The program provides three different ways for the data input: by Bravais lattices, by lattice parameters, or by introducing any spatial structure. The program calculates the components of the electric field gradient, the asymmetry parameter and the quadrupolar splitting for a given number of nearest neighbors with respect to the nuclear charge as origin. In addition, the program allows the use of different Sternheimer antishielding factors.

Keywords: Electric field gradient; quadrupolar splitting; Mossbauer spectroscopy; algorithm and numerical computation; asymmetry parameter; crystallographic lattices.

 

PACS: 61.18.Fs; 76.60.Gv; 76.80.Ay

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This work was partially supported by DGAPA–UNAM IN115612 grant.

 

Note

The program is available for its free usage under request, if and only if the appropriate acknowledgement and credit is given to the authors.

 

Appendix

 

References

1. Blatt–Weisskopf, Theoretical Nuclear Physics, 7th print, (Wiley, New York, 1963).         [ Links ]

2. B.D. Dunlop, Mossbauer Effect Data Index, Appendix I: An Introduction to Electric Quadrupole Interactions in Mossbauer Spectroscopy, (Plenum Press, I–T–I, 1970).         [ Links ]

3. J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).         [ Links ]

4. A. Messiah, Quantum Mechanics Two Volumes Bound as One. (Dover Publications Inc., New York, 1962), pp. 573.         [ Links ]

5. H. Fraunfelder, The Mossbauer Effect, (W.A. Benjamin Inc., New York, 1962).         [ Links ]

6. N.N. Greenwood, T.C. Gibb., Mossbauer Spectroscopy, (Chapman and Hall Ltd., London, 1971).         [ Links ]

7. R.M. Sternheimer, Phys. Rev. 80 (1950) 102.         [ Links ]

8. R.M. Sternheimer, Phys. Rev. 84 (1951) 244.         [ Links ]

9. R.M. Sternheimer, Phys. Rev. 132 (1963) 1637.         [ Links ]

10. R.M. Sternheimer, Phys. Rev. 164 (1967) 10.         [ Links ]

11. R.M. Sternheimer, Phys. Rev. A. 6 (1972) 1702.         [ Links ]

12. G. Martínez–Pinedo, P. Schwerdtfeger, E. Caurier, K. Langanke, W. Nazarewicz, y T. Sohnel, Phys. Rev. Lett. 87 (2001) 062701.         [ Links ]

13. R.W. Gómez, V. Marquina, J.L. Pérez–Mazariego, R. Escamilla, R. Escudero, M. Quintana, J.J. Hernández–Gómez, R. Ridaura y M.L. Marquina, J. Supercond. Nov. Magn. 23 (2010) 551–557. DOI: 10.1007/s10948–010–0764–2.         [ Links ]