SciELO - Scientific Electronic Library Online

 
vol.57 número5Viscosity enhancement in dilute magnetorheological fluids through magnetic perturbationsCu(In,Ga)Se2 thin films processed by co-evaporation and their application into solar cells índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.57 no.5 México oct. 2011

 

Investigación

 

Study of bone cells by quantitative phase microscopy using a Mirau interferometer

 

J. González-Lapreaª *, A. Márquezb, K. Noris-Suárezb, and R. Escalonaª

 

ª Laboratorio de Óptica e Interferometría, Departamento de Física. * Laboratorio de Óptica e Interferometría (006), Edificio de Física y Electrónica I, Universidad Simón Bolívar, Carretera Baruta - Hoyo de la Puerta, valle de Sartenejas, Caracas, 1080-A, Venezuela, Tel: +58 212 906 3522; Fax: +58 212 906 3600 e-mail: jeglaprea@usb.ve

b Laboratorio de Bioingeniería de tejidos Departamento de Biología Celular, Universidad Simón Bolívar (Venezuela).

 

Recibido el 25 de octubre de 2010;
aceptado el 16 de agosto de 2011

 

Abstract

The article presents the use of an interference microscope, using a Mirau objective for the study of the early adhesion process of osteoblast-like bone cells, using the phase shifting technique. The process is carried out on surgical stainless steel surfaces of interest for the development of bone implants. Experimental phase maps are directly related to cell profiles. These phase maps are obtained for several adhesion times, which indicate morphological changes in cells. Mainly the change in height profiles through time and the interaction with other surrounding cells are observed. The experimental system used is appropriate for the time scales observed, in the order of hours, showing strength and precision in the calculation of the optical phase.

Keywords: Interferential microscopy; optical phase maps; osteoblast-like cells; quantitative phase microscopy; opaque surfaces.

 

Resumen

El artículo presenta el uso de un microscopio interferencial, empleando un objetivo de Mirau, para el estudio del proceso de adhesión temprana de células óseas tipo osteoblasto, por medio de la técnica de desplazamiento de fase. El proceso es llevado a cabo sobre superficies de acero quirúrgico, que son de interés en el desarrollo de prótesis óseas. Los mapas de fase óptica obtenidos a diversos tiempos de adhesión muestran cambios morfológicos en las células; principalmente se observa el cambio en la altura de los perfiles de la fase a través del tiempo y la formación de conexiones intercelulares. El sistema de medición empleado es apropiado para las escalas de tiempo de evolución exhibidas por el sistema celular (del orden de horas), presentando además alta robustez y precisión en el cálculo de la fase óptica.

Descriptores: Microscopía interferencial; mapas de fase óptica; células osteoblasto; microscopía de fase cuantitativa; superficies opacas.

 

PACS: 42.87.Bg; 87.17.Ee

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This work was supported by FONACIT-Venezuela, Research Project Number G-1997000593, by FONACIT-Venezuela, Mision Ciencia Fellowship and Simon Bolívar University, Research Group Project USB DID-GID61. Tanks to the Materials Lab from the Venezuelan institute for the scientific research by the steel discs provided.

 

Referencias

1. E.D. Barone-Nugent, A. Barty, and K.A. Nugent, Quantitative phase-amplitude microscopy I: optical microscopy. Journal of Microscopy 206 (2002) 194-203.         [ Links ]

2. A.H. Bennett, H. Jupnik, H. Osterberg, and O.W. Richards, Phase Microscopy: Principles and Applications. (New York: John Wiley and Sons, Inc. 1951)        [ Links ]

3. K. Creath, and J.C. Wyant, Absolute measurement of surface roughness. Applied Optics 29 (1990) 3823-3827.         [ Links ]

4. C.L. Curl et al., Single Cell Volume Measurement by Quantitative Phase Microscopy (QPM): A Case Study of Erythrocyte Morphology. Cellular Physiology and Biochemistry 17 (2006) 193-200.         [ Links ]

5. C.L. Curl, etal., Refractive Index Measurement in Viable Cells Using Quantitative Phase-Amplitude Microscopy and Confocal Microscopy. Cytometry Part A 65 (2005) 88-92.         [ Links ]

6. C.L. Curl, et al., Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ. European Journal of Physiology 448 (2004) 462-468.         [ Links ]

7. M.S. Chapekar, Regulatory concerns in the development of biologic-biomaterial combinations. Journal of Biomedical Materials Research. 33 (1996) 199-203.         [ Links ]

8. R. Danz, and P. Gretscher, C-DIC: a new microscopy method for rational study of phase structures in incident light arrangement. Thin Solid Films 462-463 (2004) 257-262.         [ Links ]

9. K.J. Gâsvik, Optical Metrology (3rd ed. West Sussex, England: John Wiley and Sons Ltd. 2002)        [ Links ]

10. Z. Ge, and F. Kobayashi, High-precision measurement of a fiber connector end face by use of a Mirau interferometer. Applied Optics 45 (2006) 5832-5839.         [ Links ]

11. J. González-Laprea, J. Cappelletto, and R. Escalona, Using a frequency to voltage converter as a phase controller in phase shifting interferential microscopy, International Journal of Optomechatronics 5 (2011) 68-79.         [ Links ]

12. D.A. Haber and W.G. Thilly, Morphological transformation of C3H/10T1/2 cells subcultured at low cell densities. Life Science 22 (1978) 1663-1673.         [ Links ]

13. P. Hariharan, Optical Interferometry (2da ed. Amsterdam: Academic Press. 2003)        [ Links ]

14. M.A. Hayat, Principles and techniques of Electron Microscopy, Biological aplications (4 ed. Cambridge, U.K. Cambridge University Press. 2004)        [ Links ]

15. Johnson, H.J., Northup et al., Biocompatibility test procedures for materials evaluation in vitro. II. Objective methods of toxicity assessment. Journal of Biomedical Materials Research. 19 (1985) 489-508.         [ Links ]

16. K. Kinnstaetter, A.W. Lohmann, J. Schwider, and N. Streibl, Accuracy of phase shifting interferometry. Applied Optics 27 (1988) 5082-5089.         [ Links ]

17. D.B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (1 ed. EE. UU. Wiley-Liss, Inc. 2001)        [ Links ]

18. Noris-Suarez et al., Caracterizacion biologica empleando celulas osteoblasticas de vidrios del sistema SiO2.Na2O.CaO. K2O.MgO.P2O5, Modificados con AI2O3 B2O3. Revista latinoamericana de metalurgia ymateriales 23 (2003) 82-88.         [ Links ]

19. Popescu et al., Optical imaging of cell mass and growth dynamics. Am J Physiol Cell Physiol (2008) 295 538-544.         [ Links ]

20. G. Popescu, Y.K. Park, W. Choi, R.R. Dasari, M.S. Feld, and K. Badizadegan, Imaging red blood cell dynamics by quantitative phase microscopy. Blood Cells, Molecules, and Diseases 41 (2008) 10-16.         [ Links ]

21. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Optics Express 13 (2005) 9361-9373.         [ Links ]

22. B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons, Bio-materials science: an introduction to materials in medicine (2nd ed. San Diego, California: Elsevier Academic Press, 2004).         [ Links ]

23. M.A. Romero, F. Sánchez, J.P. Rodríguez, G. Gonzalez, and K N. Suarez, Evaluación de la interacción celular sobre guías nerviosas mediante MEB comparando dos métodos de secado. Paper presented at the 10° Congreso Interamericano de Microscopía Electrónica, Rosario, Argentina, 2009).         [ Links ]

24. J. Van Wingerden, H.J. Frankena, and C. Smorenburg, Linear approximation for measurement erros in phase shifting interferometry. Applied Optics 30 (1991) 2718-2729.         [ Links ]

25. T.M. Venema, and J.D. Schmidt, Optical phase unwrapping in the presence of branch points. Optics Express 16 (2008) 69856998.         [ Links ]

26. Z. Wang, and S. Li, Optical phase unwrapping in the presence of branch points. Applied Optics 38 (1999) 805-814.         [ Links ]

27. H.C. Yalcin, S.F. Perry, and S.N. Ghadiali, Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening. Journal of Applied Physiology 103 (2007) 1796-1807.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons