SciELO - Scientific Electronic Library Online

 
vol.56 issue4Estudio experimental de un láser sintonizable en longitud de onda usando un filtro de Sagnac con selectividad espectral mediante cambios en la temperatura author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.56 n.4 México Aug. 2010

 

Carta

 

Realization of multiscroll chaotic attractors by using current–feedback operational amplifiers

 

R. Trejo–Guerraª, E. Tlelo–Cuautleª, C. Sánchez–Lópezb, J.M. Muñoz–Pachecoc, and C. Cruz–Hernándezd

 

ª INAOE, Electronics Department, Luis Enrique Erro 1, Tonantzintla, Puebla, 72840 Mexico.

b UAT, Department of Electronics Engineering, Calzada Apizaquito, Apizaco, Tlaxcala, 90300 Mexico.

c UPP, Electronics and Telecommunications Department, Puebla, 72640 Mexico.

d CICESE, Electronics and Telecommunications Department, Km. 107, Carretera Tijuana–Ensenada, 22860 Ensenada, B.C., Mexico.

 

Recibido el 8 de marzo de 2010
Aceptado el 21 de mayo de 2010

 

Abstract

Multiscroll chaotic attractors are physically implemented by using commercially available current–feedback operational amplifiers (CFOAs). The values of the circuit elements are obtained systematically by a proposed technique based in the saturation of the CFOA to create Piece–Wise Linear (PWL) functions. Herein the technique is verified by Spice simulations and in experimental form by using CFOAs to generate n–scroll attractors in a systematic way. Lyapunov exponents are given to prove the chaotic behavior.

Keywords: n–scroll attractors; Chua's circuit; break point; Lyapunov exponent; CFOA; PWL function.

 

Resumen

Se realiza la implementacion física de atractores caóticos de múltiples enrollamientos por medio del circuito comercial denominado amplificador operacional retroalimentado en corriente (CFOA). Los valores de los elementos del circuito son obtenidos sistemáticamente por medio de una técnica propuesta basada en la saturación del CFOA para generar funciones lineales a tramos (PWL functions). En este punto, la técnica es verificada por medio de simulaciones en Spice, así como de manera experimental utilizando CFOAs para generar atractores de n–enrollamientos de forma sistemática. Se presentan los exponentes de Lyapunov para corroborar el comportamiento caótico.

Descriptores: Atractores n–enrollamientos; circuito de Chua; punto de quiebre; exponente de Lyapunov; CFOA; función lineal a tramos.

 

PACS: 05.45.Pq; 05.45.Pq; 84.30.Ng; 07.50.Ek; 84.30.–r; 01.50.Pa

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgment

This work is supported by CONACyT–MEXICO through the scholarship 204229 and the project numbers 48396–Y, J49593–Y, P50051, Promep UATLX–PTC–088 and by Consejería de Innovation, Ciencia y Empresa, Junta de Andalucía Spain, under the project TIC–2532. The second author acknowledge the CONACyT sabbatical leaves program for his stay at University of California at Riverside during 2009–2010. The third author thanks the support of the JAE–Doc program of CSIC, co–funded by FSE, Spain. We also acknowledges the participation of Roberto Toledo in the realization ofthe experiments.

 

References

1. R. Fossion and R. Bijker, Rev. Mex. Fis. 55 (2009) 41.         [ Links ]

2. R. Hasimoto, Rev. Mex. Fis. 53 (2007) 332.         [ Links ]

3. C. Aguilar–Ibanez, E. Hernández–Rubio, and M.S. Suárez–Castanon, Rev. Mex. Fis. 53 (2007) 436.         [ Links ]

4. C.A. Cruz–Villar, Rev. Mex. Fis. 53 (2007) 415.         [ Links ]

5. E. Campos–Canton, J.S. Murgía, I. Campos Canton, and M. Chavira–Rodríguez, Rev. Mex. Fis. 53 (2007) 159.         [ Links ]

6. J.A.K. Suykens, A. Huang, and L.O. Chua, Int. J Electron. Commun. 51 (1997) 131.         [ Links ]

7. M.E. Yalcin, J.A.K. Suykens, and J. Vandewalle, Int. J. Bifurc. Chaos 12 (2002) 23.         [ Links ]

8. J. Lu, G. Chen, X. Yu, and H. Leung, IEEE Trans. Circuits Syst. I 51 (2004) 2476.         [ Links ]

9. F. Han, J. Lu, X. Yu, and G. Chen, Chaos Solitons Fractals 28 (2006) 182.         [ Links ]

10. F. Han, J. Lu, X. Yu, G. Chen, and Y. Feng, Dynamics of Continuous Discrete and Impulsive Systems Series B 12 (2005) 95.         [ Links ]

11. K.S. Tang, G.Q. Zhong, G. Chen, and K.F. Man, IEEE Trans. Circuits Syst. 148 (2001) 1369.         [ Links ]

12. L. Gamez–Guzman, C. Cruz–Hernández, R.M. López–Gutiérrez, and E.E. García–Guerrero, Rev. Mex. Fis. 54 (2008) 299.         [ Links ]

13. G. Zhong, K.F. Man and G. Chen, Int. J. Bifurc. Chaos 12 (2002) 2907.         [ Links ]

14. S. Yu, S. Qiu, and Q. Lin, Sci in China F 46 (2003) 14.         [ Links ]

15. S. Yu, W.K.S. Tang, and G. Chen, Int. J. Bifurc. Chaos 17 (2007) 3951.         [ Links ]

16. J.M. Muñoz–Pacheco and E. Tlelo–Cuautle, J. App. Research Technol. 7 (2009) 5.         [ Links ]

17. R. Rocha and R.O. Medrano, Nonlinear Dyn. 56 (2009) 389.         [ Links ]

18. E. Campos–Canton and I. Campos Canton, Rev. Mex. Fis. 54 (2008) 411.         [ Links ]

19. J.M. Munoz–Pacheco and E. Tlelo–Cuautle, Electronic Design Automation of Multi–Scroll Chaos Generators (Bentham Sciences Publishers Ltd, 2010).         [ Links ]

20. K.N. Salama, S. Ozoguz, and A.S. Elwakil, Proc. Int. Symp. on Circuits and Systems (ISCAS'2003) 3 (2003) 176.         [ Links ]

21. R. Senani and S.S. Gupta, Electronic Lett. 34 (1998) 829.         [ Links ]

22. E. Tlelo–Cuautle, A. Gaona–Hernández, and J. García–Delgado, Analog Integr. Circuits Signal Process. 48 (2006) 159.         [ Links ]

23. C. Sánchez–López, R. Trejo–Guerra and E. Tlelo–Cuautle,Proc. 7th ICCDCS, ICCDCS (2008) Cancun, Mexico, ID–33.         [ Links ]

24. R. Trejo–Guerra, E. Tlelo–Cuautle, C. Cruz–Hernández, and C. Sánchez–López, Int. J. Bifurc. Chaos 19 (2009) 4217.         [ Links ]

25. C. Sánchez–López, R. Trejo–Guerra, J.M. Munoz–Pacheco, and E. Tlelo–Cuautle, Nonlinear Dynam (2010), doi: 10.1007/s11071–009–9652–3        [ Links ]

26. T. Tsubone and T. Saito, IEEE Trans Circ Sys I 45 (1998) 172.         [ Links ]

27. M. Storace and F. Bizzarri, IEEE Trans Circ Sys I 54 (2007) 620.         [ Links ]

28. Data SheetAD844: www.analog.com/en/other/militaryaerospace/ad844/products/product.html        [ Links ]

29. M. Parodi, M. Storace, and P. Julian, IJ Circ Theory Apps 33 (2005) 307.         [ Links ]

30. C. Wen and X. Ma, IEEE Trans Circ Sys I 55 (2008) 1328.         [ Links ]

31. M. Delgado–Restituto, J. Ceballos–Cáceres, and A Rodríguez–Vázquez, Proc. IEEE Int Symp Circuits and Systems (1996) 469.         [ Links ]

32. M. Kachare, J. Ramírez–Angulo, R. Gonzalez Carvajal, and A.J. López–Martín, IEEE Trans Circ Sys I 52 (2005) 2033.         [ Links ]

33. M.S. Bhat, S. Rekha, and H.S. Jamadagni, 19th Int Conf on VLSI Design (2006), doi:10.1109/VLSID.2006.88.         [ Links ]

34. L.O. Chua, Kang, and Sung Mo, Proceedings ofthe IEEE 65 (1977) 915.         [ Links ]

35. R. Trejo–Guerra, E. Tlelo–Cuautle, J.M. Muñoz–Pacheco, C. Cruz–Hernández, and C. Sánchez–López, Operating Characteristics of Mosfets in Chaotic Oscillators, in Transistors: Types, Materials and Applications (Nova Publishers, 2010).         [ Links ]

36. J. Lu, G. Yang, H. Oh, and A.C.J. Luo, Chaos, Solitons Fractals 23 (2005) 1879.         [ Links ]

37. L. Dieci, J. Dynam. Differ. Equat. 14 (2002) 697.         [ Links ]

38. K. Ramasubramanian and M.S. Sriram, Phys. Nonlinear Phenom. 139 (2000) 72.         [ Links ]

39. T S. Parker and L.O. Chua, Practical Numerical Algorithms for Chaotic Systems (Springer–Verlag, NY, 1989).         [ Links ]

40. G.H. Golub and C.V. Loan, Matrix Computations, 3rd ed. (The Johns Hopkins University Press, 1996).         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License