SciELO - Scientific Electronic Library Online

 
vol.56 número3A note on a traveling wave on an extensible capsule membrane -with bending rigidity- in poiseuille flowStructural study of colombian coal by fourier transform infrared spectroscopy coupled to attenuated total reflectance (FTIR-ATR) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.56 no.3 México jun. 2010

 

Investigación

 

Constructal complex–objective optimization of electromagnet based on magnetic induction and maximum temperature difference

 

Shuhuan Wei, Lingen Chen*, and Fengrui Sun

 

Postgraduate School, Naval University of Engineering, Wuhan 430033, P.R. China, Fax: 0086–27–83638709, Tel: 0086–27–83615046, *e–mail: lgchenna@yahoo.com; lingenchen@hotmail.com

 

Recibido el 27 de enero de 2010
Aceptado el 3 de marzo de 2010

 

Abstract

The good performance of an electromagnet requires high magnetic induction and a low temperature. A new complex–objective function reflected magnetic induction and maximum temperature difference is set up, and the electromagnet is optimized using the new complex–objective function. The optimization results show that the performance of the electromagnet is improved as the number of high thermal conductivity cooling discs inserted increases. When the performance of the electromagnet achieves its best level, the solenoid becomes longer and thinner as the number of high thermal conductivity cooling discs increases. Simultaneously, the magnetic induction becomes higher and the maximum temperature difference becomes lower. The optimized performance of the electromagnet also improves as the volume of solenoid increases; simultaneously, the magnetic induction first increases and then decreases, and the maximum temperature difference decreases all along.

Keywords: Constructal theory; electromagnet; complex–objective optimization.

 

Resumen

El buen funcionamiento de un electroimán requiere de una alta inducción magnética y una baja temperatura. Los resultados de la optimización demuestran que el funcionamiento del electroimán mejora al incrementar el número de discos de enfriamiento de alta conductividad térmica insertados. Cuando el funcionamiento del electroimán alcanza su mejor nivel, el solenoide llega a ser más largo y más fino mientras que el número de discos de enfriamiento de alta conductividad térmica aumenta. Simultáneamente, la inducción magnética llega a ser más alta y la diferencia de la temperatura máxima disminuye. El funcionamiento optimizado del electroimán también mejora mientras que el volumen de solenoide aumenta; simultáneamente, la inducción magnética primero aumenta y después disminuye, y la diferencia de la temperatura máxima disminuye.

Descriptores: Teoría constructal; electroimán; optimización complejo–objetiva.

 

PACS: 057.70.–a; 01.40G

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This paper is supported by The National Natural Science Foundation of P. R. China (Project No. 10905093), The Program for New Century Excellent Talents in University of P. R. China and The Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (Project No. 200136).

 

References

1. A. Bejan, Shape and Structure,from Engineering to Nature (Cambridge: Cambridge University Press, 2000).        [ Links ]

2. A. Bejan and S. Lorente, J. Non–Equilib.Thermodyn. 26 (2001) 305.        [ Links ]

3. R.N. Rosa, A.H. Reis, and A.F. Miguel, Proceedings of the Symposium Bejan's Constructal Theory of Shape and Structure (Evora: University of Evora, Portugal, 2004).        [ Links ]

4. A. Bejan and S. Lorente, The Constructal Law(LaLoi Constructale) (Paris: L'Harmatan, 2005).        [ Links ]

5. A. Bejan and S. Lorente, J. Appl. Phys. 100 (2006) 041301.        [ Links ]

6. A.H. Reis, Appl. Mech. Rev. 59 (2006) 269.        [ Links ]

7. A. Bejan and J.H. Marden, Am. Sci., 94 (2006) 342.        [ Links ]

8. A. Bejan and G.W. Merkx, Constructal Theory of Social Dynamics (New York: Springer; 2007).        [ Links ]

9. A. Bejanand and S. Lorente, Design with Constructal Theory. (New Jersey: Wiley, 2008).        [ Links ]

10. A. Bejan, S. Lorente, and A.F. Miguel, Constructal Human Dynamics (Security & Sustainability. Amsterdam: IOS Press, 2009).        [ Links ]

11. S. Lorente, Int. J. Energy Res., 33 (2009) 211.        [ Links ]

12. A. Bejan and J.H. Marden, Phys. Life Rev. 6 (2009) 85.        [ Links ]

13. A. Bejan, J. Heat Transfer 40 (1997) 799.        [ Links ]

14. L. Gosselin, A. Bejan, and S. Lorente, Int. J. Heat Mass Transfer 47 (2004) 3477.        [ Links ]

15. A.K. da Silva and L. Gosselin, Int. J. Heat Mass Transfer, 48 (2005) 609.        [ Links ]

16. L.A.O. Rocha, S. Lorente, and A. Bejan, Int. J. Heat Mass Transfer 49 (2006) 2626.        [ Links ]

17. S. Zhou, L. Chen, and F. Sun, J. Phys. D: Appl. Phys. 40 (2007) 3545.        [ Links ]

18. W. Wu, L. Chen, and F. Sun, Energy Convers. Manage. 48 (2007) 101.        [ Links ]

19. S. Zhou, L. Chen, and F. Sun, Appl. Energy 84 (2007) 505.        [ Links ]

20. W. Wu, L. Chen, and F. Sun, Appl. Energy 84 (2007) 39.        [ Links ]

21. S. Zhou, L. Chen, F. Sun, Energy Convers. Mgmt. 48 (2007) 106.        [ Links ]

22. M. Joucaviel, L. Gosselin, and T. Bello–Ochende, Int. Comm. Heat Mass Transfer 35 (2008) 557.        [ Links ]

23. L. Chen, S. Wei, and F. Sun, J. Phys. D: Appl. Phys. (2008) 41 195506.        [ Links ]

24. V.A.P Raja, T. Basak, and S.K. Das, Int. J. Heat Mass Transfer 51 (2008) 3582.        [ Links ]

25. L. Luo, Z. Fan, and H.L. Gall, Chem. Engng. Proc.: Process Intensification (2008) 47 229.        [ Links ]

26. G. Lorenzini and L.A.O. Rocha, Int. J. Heat Mass Transfer 52 (2009) 4683.        [ Links ]

27. S. Wei, L. Chen, and F. Sun, Appl. Energy 86 (2009) 1111.        [ Links ]

28. J. Dirker and J.P. Meyer, Int. J. Heat Mass Transfer 52 (2009) 1374.        [ Links ]

29. P. Xu et al., Int. J. Therm. Sci. 48 (2009) 2139.        [ Links ]

30. K.M. Wang, S. Lorente, and A. Bejan, Int. J. Heat Mass Transfer (2009) 52 4175.        [ Links ]

31. A. Husain and K.Y. Kim, Int. J. Heat Mass Transfer (2009) 52 5271.        [ Links ]

32. H. Zhang, S. Lorente, and A. Bejan, Int. J. Heat Mass Transfer 52 (2009) 4327.        [ Links ]

33. L. Gosselin and A. Bejan, Int. J. Thermal Science, 43 (2004) 331.        [ Links ]

34. L. Chen, S. Wei, and F. Sun, J. Appl. Phys. 105 (2009) 094906.        [ Links ]

35. Z. Guo, H. Zhu, and X. Liang, Int. J. Heat Mass Transfer 50 (2007) 2545.        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons