SciELO - Scientific Electronic Library Online

 
vol.56 número3BEC transition of a weakly interacting ultracold Bose gas in a linear quadrupolar trapA note on a traveling wave on an extensible capsule membrane -with bending rigidity- in poiseuille flow índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.56 no.3 México jun. 2010

 

Investigación

 

Maximum efficiency of an irreversible heat engine with a distributed working fluid and linear phenomenological heat transfer law

 

Lingen Chen*, Shaojun Xia, and Fengrui Sun

 

Postgraduate School, Naval University of Engineering, Wuhan 430033, P.R. China, Fax: 0086–27–83638709. Tel: 0086–27–83615046 *e–mail address: , lingenchen@hotmail.com , lgchenna@yahoo.com.

 

Recibido el 4 de enero de 2010
Aceptado el 9 de marzo de 2010

 

Abstract

Maximum efficiency of an irreversible heat engine with a distributed working fluid, in which the heat transfers between the working fluid and the heat reservoirs obey the linear phenomenological heat transfer law , is studied in this paper by using finite–time thermodynamics based on Orlov and Berry's worki. Two kinds of efficiencies are defined, and the problems are divided into three cases. Optimal control theory is used to determine the upper bounds of efficiencies of the heat engines for various cases. Numerical examples of the two efficiencies for the irreversible heat engine with lumped–parameter model working between variable temperature reservoirs are provided, and the effects of changes of the reservoir's temperature on the maximum efficiency of the heat engine are analyzed. The obtained results are also compared with those obtained by Orlov and Berryii with Newtonian heat transfer law .

Keywords: Finite–time thermodynamics; linear phenomenological heat transfer law; heat engine; distributed working fluid; maximum efficiency; optimal control.

 

Resumen

En este artículo se estudia la eficiencia máxima de un motor térmico irreversible con un fluido de trabajo distribuido, en el cual las transferencias térmicas entre el fluido de trabajo y los depósitos térmicos obedecen la ley fenomenológica linear de transferencia térmica, usando la termodinámica del finito–tiempo basada en el trabajo de Orlov y Berryi. Se definen dos clases de eficiencias, y los problemas se dividen en tres casos. La teoría de control óptima se utiliza para determinar los límites superiores de las eficiencias de los motores térmicos para varios casos. Se proporcionan ejemplos numéricos de las dos eficiencias de motor térmico irreversible con el modelo del amontonar–parámetro trabajando entre los depósitos de temperatura variable, y se analizan los efectos de los cambios de temperatura del recipiente en la eficacia máxima del motor térmico. Los resultados obtenidos también se comparan con los obtenidos por Orlov y Barryii con la ley neutoniana del transferencia térmica .

Descriptores: Termodinámica de tiempos finitos; ley lineal fenomenológica de transferencia de calor; motor térmico; fluido de trabajo distribuido; eficiencia máxima; control óptimo.

 

PACS: 05.70.Ln; 05.60.Cd; 05.70.–a

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This paper is supported by The National Natural Science Foundation of P. R. China (Project No. 10905093), Program for New Century Excellent Talents in University of P. R. China (Project No. NCET–04–1006) and The Foundation for the Author of National Excellent Doctoral Dissertation of P.R. China (Project No. 200136). The authors wish to thank the reviewer for his careful, unbiased and constructive suggestions, which led to this revised manuscript.

 

References

i. V.N. Orlov and R.S. Berry, Phys. Rev. A 45 (1992) 7202.        [ Links ]

ii. V.N. Orlov and R.S. Berry, Phys. Rev. A 45 (1992) 7202.        [ Links ]

1. B. Andresen, R.S. Berry, M.J. Ondrechen, and P. Salamon, Acc. Chem. Res. 17 (1984) 266.        [ Links ]

2. S. Sieniutycz and P. Salamon, Advances in Thermodynamics. Vol. 4: (eds.) Finite Time Thermodynamics and Thermoeconomics (New York: Taylor & Francis, 1990).        [ Links ]

3. A. Bejan, J. Appl. Phys. 79 (1996) 1191.        [ Links ]

4. R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, and A.M. Tsirlin, Thermodynamic Optimization of Finite Time Processes (Chichester: Wiley, 1999).        [ Links ]

5. L. Chen, C. Wu, and F. Sun, J. Non–Equilib. Thermodyn 24 (1999) 327.        [ Links ]

6. K.H. Hoffman, J. Burzler, A. Fischer, M. Schaller, and S. Schubert, J. Non– Equilib. Thermodyn. 28 (2003) 233.        [ Links ]

7. S. Sieniutycz, Progress Energy & Combustion Science (2003) 29 193.        [ Links ]

8. L. Chen and F. Sun, Analysis and Optimization (New York: Nova Science Publishers, 2004).        [ Links ]

9. A.M. Tsirlin, Proc. the Steklov Institute Mathematics 261 (2008) 270.        [ Links ]

10. M. Feidt, Int. J. Exergy 5 (2008) 500.        [ Links ]

11. B. Andresen, AIP Conference Proceedings 1033 (2008) 213.        [ Links ]

12. S. Sieniutycz and J. Jezowski, Energy Optimization in Process Systems (Elsevier, Oxford, UK, 2009).        [ Links ]

13. M.H. Rubin, Phys.Rev.A. 19 (1979) 1272.        [ Links ]

14. M.H. Rubin Phys.Rev.A. 22 (1980) 1741.        [ Links ]

15. M.J. Ondrechen, M.H. Rubin, and Y.B. Band, J. Chem. Phys. 78 (1983) 4721.        [ Links ]

16. L. Chen, S. Zhou, F. Sun, and C. Wu, Open Sys. & Information Dyn. 9 (2002) 85.        [ Links ]

17. F. Angulo–Brown, G. Ares de Parga, and L.A. Arias–Hernandez, J. Phys D: Appl. Phys. 35 (2002) 1089.        [ Links ]

18. Y.B. Band, O. Kafri and P. Salamon Chem. Phys. Lett. (1980) 72 127.        [ Links ]

19. Y.B. Band, O. Kafri, and P. Salamon, J. Appl. Phys. 53 (1982) 8.        [ Links ]

20. Y.B. Band, O. Kafri, and P. Salamon, J. Appl. Phys. 53 (1982) 29.        [ Links ]

21. P. Salamon, Y.B. Band, and O. Kafri, J. Appl. Phys. 53 (1982) 197.        [ Links ]

22. B.M. Aizenbud and Y.B. Band, J. Appl. Phys. 52 (1981) 3742.        [ Links ]

23. B.M. Aizenbud, Y.B. Band, and O. Kafri, J. Appl. Phys. 53 (1982) 1277.        [ Links ]

24. J.M. Gordon and M. Huleihil, J. Appl. Phys. 69 (1991) 1.        [ Links ]

25. M. Huleihil and B. Andresen, J. Appl. Phys. 100 (2006) 114914.        [ Links ]

26. M. Mozurkewich and R.S. Berry, Proc. Natl. Acad. Sci. U.S.A. 78 (1981) 1986.        [ Links ]

27. M. Mozurkewich and R.S. Berry, J. Appl. Phys. 53 (1982) 34.        [ Links ]

28. K.H. Hoffman, S.J. Watowich, and R.S. Berry, J. Appl. Phys. 58 (1985) 2125.        [ Links ]

29. M. Mozurkewich and R.S. Berry, J. Appl. Phys. 54 (1983) 3651.        [ Links ]

30. S.J. Watowich, K.H. Hoffmann, and R.S. Berry, J. Appl. Phys. 58 (1985) 2893.        [ Links ]

31. S.J Watowich, K.H. Hoffmann, and R.S. Berry, Nuovo Cimento B 104 (1989) 131.        [ Links ]

32. L. Nummedal, Entropy Production Minimization of Chemical Reactors and Heat Exchangers. Ph D dissertation, (Norwegian University of Science and Technology, Trondheim, Norway, 2001).        [ Links ]

33. E. Johannessen, The State of Minimizing Entropy Productionin an Optimality Controlled Systems. Ph D dissertation, (Norwegian University of Science and Technology, Trondheim, Norway, 2004).        [ Links ]

34. S.B Linetskii and A.M. Tsirlin, Thermal Engng. 35 (1988) 593.        [ Links ]

35. B. Andresen and J.M. Gordon, J. Appl. Phys. 71 (1992) 76.        [ Links ]

36. V. Badescu J. Phys. D: Appl. Phys. 37 (2004) 2298.        [ Links ]

37. S.A Amelkin, K.H Hoffmann, B. Sicre, and A.M. Tsirlin, Chem. Eng. 44 (2000) 3.        [ Links ]

38. V.N Orlov and R.S. Berry, Phys. Rev. A 42 (1990) 7230.        [ Links ]

39. V.N. Orlov and R.S. Berry, Phys. Rev. A 45 (1992) 7202.        [ Links ]

40. V.N. Orlov and R.S. Berry, J. Appl. Phys 74 (1993) 4317.        [ Links ]

41. A. de Vos. Am. J. Phys. (1985) 53 570.        [ Links ]

42. L. Chen, and Z. Yan, J. Chem. Phys. 90 (1989) 3740.        [ Links ]

43. J.M. Gordon Am. J. Phys. 58 (1990) 370.        [ Links ]

44. L. Chen, F. Sun, and C. Wu, J. Phys. D: Appl. Phys. 32 (1999) 99.        [ Links ]

45. M. Huleihil, and B. Andresen, J. Appl. Phys. 100 (2006) 014911.        [ Links ]

46. S. Sieniutycz, Applied Mathematical Modelling 33 (2009) 1457.        [ Links ]

47. S. Sieniutycz, Energy (2009) 34 334.        [ Links ]

48. H. Song, L. Chen, J. Li, F. Sun, and C. Wu, J. Appl. Phys. 100 (2006) 124907.        [ Links ]

49. H. Song, L. Chen, and F. Sun, Appl. Energy 84 (2007) 374.        [ Links ]

50. H. Song, L. Chen, and F. Sun, Science in China Series G: Physics, Mechanics & Astronomy 51 (2008) 1272.        [ Links ]

51. H. Song, L. Chen, F. Sun, and S. Wang, J. Non–Equibri. Thermodyn. (2008) 33 275.        [ Links ]

52. J. Li, L. Chen, and F. Sun, Appl. Energy (2007) 84 944.        [ Links ]

53. L. Chen, H. Song, F. Sun, and S. Wang Rev. Mex. Fís. 55 (2009) 55.        [ Links ]

54. Z. Yan and J. Chen, J. Chem. Phys. (1990) 92 1994.        [ Links ]

55. L. Chen, F. Sun, and C. Wu, Appl. Energy 83 (2006) 71.        [ Links ]

56. G. Xiong, J. Chen, and Z. Yan, J. Xiamen University(Nature Sciences) 28 (1989) 489.        [ Links ]

57. L. Chen, X. Zhu, F. Sun, and C. Wu, Appl. Energy 78 (2004) 305.        [ Links ]

58. L. Chen, X. Zhu, F. Sun, and C. Wu, Appl. Energy 83 (2006) 537.        [ Links ]

59. J. Li, L. Chen, and F. Sun, Sci. China Ser. G: Phys., Mech.& Astron. (2009) 52 587.        [ Links ]

60. G. Ares de Parga, F. Angulo–Brown, and T.D. Navarrete–Gonzalez, Energy, The Int. J. (1999) 24 997.        [ Links ]

61. S. Xia, L. Chen, and F. Sun, Sci. China Ser. G: Phys., Mech.& Astron 52 (2009) 1961.        [ Links ]

62. L. Chen, S. Xia, and F. Sun, Energy Fuels24 (2010) 295.        [ Links ]

63. M.J. Ondrechen, B. Andresen, M. Mozurkewich, and R.S. Berry, Am. J. Phys. (1981) 49 681.        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons