SciELO - Scientific Electronic Library Online

 
vol.56 número3Fiber optic sensing of relative humidity using a twin low coherence interferometerAbsorción óptica a altas presiones del TLGaSe2 índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.56 no.3 México jun. 2010

 

Investigación

 

Carrier heating effects on transport phenomena in intrinsic semiconductor thin films

 

G. Gonzalez de la Cruz* and Yu G. Gurevich

 

Departamento de Física Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14–740, México 07000 D.F. México, *e–mail: bato@fis.cinvestav.mx

 

Recibido el 24 de octubre de 2009
Aceptado el 20 de abril de 2010

 

Abstract

The excess of nonequilibrium charge carriers due to heating by electric fields influences substantially the electron heat–diffusion and the carrier current density in thin film semiconductors. With the assumption of hole and phonon thermal equilibrium, the current density for electrons and holes and electron heat flux in the semiconductor thin films are calculated analytically taking into account the contribution of the nonequilibrium of carriers and the electron temperature. By using the continuity equations for the carrier densities and energy balance equation with appropriate boundary conditions at the surfaces of the sample, we find that the current density and electron heat flux depend substantially on the size of the sample.

Keywords: Nonequilibrium charge carriers; electron heat diffusion; electron temperature.

 

Resumen

Exceso de portadores fuera de equilibrio debido campos eléctricos afecta considerablemente el proceso de difusión de calor electrónico y la densidad de corriente en películas delgadas semiconductoras. En la aproximación de equilibrio térmico entre fonones y huecos la densidad de corriente de electrones y huecos y el flujo de calor asociado al sistema electrónico en películas delgadas semiconductoras son calculados analíticamente considerando la temperatura propia del sistema electrónico fuera de equilibrio. Las propiedades de transporte de los portadores cargados fuera de equilibrio en semiconductores son calculados usando la ecuación de continuidad para electrones y huecos y la ecuación de balance de energía con condiciones a la frontera en la superficie de la muestra. Dentro de estas aproximaciones se demuestra que la densidad de corriente y el flujo de energía asociado al sistema electrónico dependen fuertemente de las dimensiones de la muestra.

Descriptores: Portadores cargados fuera de equilibrio; difusión de calor de electrones; temperatura de electrones.

 

PACS: 05.60.Cd; 72.20.Ht; 73.50.Fq

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This work has been partially supported by the Consejo Nacional de Ciencia y Tecnología–Conacyt, México.

 

References

1. J. Callaway, Quantum Theory of Solid State Physics (Academic Press, 1991).        [ Links ]

2. M. Jaros, Physics and Applications of semiconductor Microstructures (Oxford Sci. Appl. 1990).        [ Links ]

3. E.M. Conwell, High Field Transport in Semiconductors (New York: Academic, 1967).        [ Links ]

4. F.G. Bass and Yu G. Gurevich, Hot Electrons and Strong Electromagnetic Waves in Semiconductors and Gas Discharge Plasmas (Moscow: Nauka in Russian, 1975).        [ Links ]

5. F.G. Bass, V.S. Bochkov and Yu G. Gurevich, Electrons and Phonons in Bounded Semiconductors (Moscow: Nauka in Russian, 1984).        [ Links ]

6. L. Reggiani, Hot–Electron Transport in Semiconductors: Topics in Applied Physics (Berlin: Springer, 1985).        [ Links ]

7. Yu.G. Gurevich and F.P. Rodriguez, Fenomenos de Transporte en Semiconductores (Fondo de Cultura Economica, 2000).        [ Links ]

8. F.G. Bass and Yu G. Gurevich, Sov. Phys.—Usp. 14 (1971) 113.        [ Links ]

9. F.G. Bass, V.S. Bochkov, and Yu.G. Gurevich, Sov.Phys.— Semicond. 7 (1973) 1.        [ Links ]

10. M. Asche, H. Kostial, and O.G Sarbey Phys. Status Solidi b 91 (1979) 521.        [ Links ]

11. Z.S. Gribnikov, K. Hess, and G.A. Kosinovsky, J. Appl. Phys. 77 (1995) 1337.        [ Links ]

12. L.V. Keldish, Sov. Phys.—JETP 21 (1965) 1135.        [ Links ]

13. S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1981).        [ Links ]

14. M.H. Jorgensen, Phys. Rev. B 18 (1978) 5657.        [ Links ]

15. E.O. Kane, J. Phys. Chem. Solids 1 (1957) 249.        [ Links ]

16. V.A. Pogrebnyak, Sov. Phys.—Solid State 14 (1972) 934.        [ Links ]

17. L. Reggiani, E. Starikov, P. Shiktorov, V. Gruzinshis, and L. Varani Semicond. Sci. Technol. (1997) 12 141.        [ Links ]

18. D. Huang, T. Apostolova, P.M. Asing, and D.A. Cardimona Phys. Rev. B 69 (2004) 075214.        [ Links ]

19. K.T. Tsen Ultrafast Dynamical Process in Semiconductors: Topics in Applied Physics vol 92 ed K.T. Tsen (Berlin: Springer, 2004) p. 193.        [ Links ]

20. Yu G. Gurevich and I.N. Volovichev, Phys. Rev. B 60 (1999) 7715.        [ Links ]

21. I.N. Volovichev and Yu. G. Gurevich, Semiconductors 35 (2001) 306.        [ Links ]

22. Yu G Gurevich and G. Gonzalez de la Cruz, Semicond. Sci. Thecnol. 21 (2006) 1686.        [ Links ]

23. G. Gonzalez de la Cruz and Yu G. Gurevich, J. Phys. Condens. Matter 19 (2007) 456220.        [ Links ]

24. I.N. Volovichev, J.E. Velazquez–Perez, and Yu G. Gurevich, Solid–State Electronics 52 (2008) 1703.        [ Links ]

25. J.P. McKelvey, Solid State and Semiconductor Physics (Harper International Edition, 1966).        [ Links ]

26. Yu G. Gurevich, J.E. Velazquez–Perez, G. Espejo, I.N. Volovichev, and O. Yu Titov, J. Appl. Phys. 101 (2007) 023705.        [ Links ]

27. Yu G. Gurevich and O.L. Mashkevich, Physics Reports 181 (1989).        [ Links ]

28. Gulyamov, Yu G. Gurevich, and N. Zakirov, Semiconductors 28 (1993) 322.        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons