SciELO - Scientific Electronic Library Online

 
vol.56 número2Preparación de películas delgadas del sistema Ti-Al-O mediante rf-sputteringUnstable states of In xAl yGa1-x-yN quaternary alloys índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.56 no.2 México abr. 2010

 

Investigación

 

Performance characteristic of energy selective electron (ESE) refrigerator with filter heat conduction

 

Zemin Ding, Lingen Chen, and Fengrui Sun

 

Postgraduate School, Naval University of Engineering, Wuhan 430033, P.R. China, Fax: 0086–27–83638709, Tel: 0086–27–83615046. E–mail: lgchenna@yahoo.com; lingenchen@hotmail.com

 

Recibido el 9 de marzo de 2009
Aceptado el 11 de enero de 2010

 

Abstract

The cooling load and coefficient of performance (COP) characteristic of an energy selective electron (ESE) refrigerator with filter heat conduction operating in the maximum cooling load regime and the intermediate regime (i.e. between maximum cooling load operation and reversible operation) are analyzed in this paper. In the analyses, the analytical formulae for cooling load and COP of the ESE refrigerator are derived for the two operation regimes, respectively. The performance characteristics are obtained by numerical calculations. The influence of the resonance widths on the performance of the ESE refrigerator in the intermediate regime is discussed. It is shown that, in the maximum cooling load operation regime, when the filter heat transfer is taken into account, the cooling load versus COP characteristic change from monotonic curves (without filter heat conduction) to parabolic–like ones (with filter heat conduction); while in the intermediate regime, the cooling load versus COP characteristic are always loop–shaped ones and the heat conduction of the filter does not change the shape of the characteristic curves. The cooling load is a parabolic–like function of resonance width while the COP is a monotonic one of resonance width. With the increase in thermal conductivity, the COP decreases in both operation regimes. The results obtained herein have theoretical significance for the understanding of thermodynamic performance of the micro–nano devices.

Keywords: Energy selective electron (ESE) refrigerator; cooling load; COP; performance characteristic.

 

Resumen

Se analizan en este trabajo la carga de enfriamiento y el coeficiente de desempeño (COP, por sus siglas en inglés) de un refrigerador de selección de energía electrónica (ESE, por sus siglas en inglés), con filtro de conducción de calor, operando en el régimen de máxima carga de enfriamiento y en el régimen intermedio (i.e. entre la operación a máxima carga de enfriamiento y la operación reversible). Se deducen analíticamente fórmulas para la carga de enfriamiento y el COP del refrigerador ESE, bajo los dos regímenes de operación, respectivamente. Se obtienen, mediante cálculos numéricos, las características de funcionamiento. Se discute la influencia de los anchos de resonancia en el desempeño del refrigerador ESE en el régimen intermedio. Se demuestra que, en el régimen de operación a máxima carga de enfriamiento, cuando se toma en cuenta el filtro de transferencia de calor, la carga de enfriamiento versus el COP cambia de una curva monotónica (sin filtro de calor de conducción) a curvas de tipo parabólico (con filtro de calor de conducción); en cambio, en el régimen intermedio, la carga de enfriamiento versus el COP son siempre curvas en forma de bucle y la conducción de calor del filtro no cambia la forma de las curvas características. La carga de enfriamiento es una función en forma de parábola del ancho de resonancia, mientras que el COP es una función monótona del ancho de resonancia. El COP decrece en ambos regímenes de operación, al aumentar la conductividad térmica. Los resultados que aquí se obtienen son teóricamente significativos para la comprensión del desempeño termodinámico de micronano dispositivos.

Descriptores: Refrigerador de selección de energía electrónica; carga refrigerante; COP; desempeño característico.

 

PACS: 84.50.+d; 05.70.Ln; 84.30.Vn; 05.40.Jc

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This paper is supported by Program for New Century Excellent Talents in the University of P.R. China (Project No. NCET–04–1006) and The Foundation for the Author of National Excellent Doctoral Dissertation of P.R. China (Project No. 200136). The authors wish to thank the reviewer for his careful, unbiased and constructive suggestions, which led to this revised manuscript.

 

References

1. G.D. Mahan, Solid State Physics 51 (1997) 81.        [ Links ]

2. F.J. DiSalvo, Science 285 (1999) 703.        [ Links ]

3. C. Wood, Rep. Prog. Phys. 51 (1988) 459.        [ Links ]

4. G. Min and D.M. Rowe, Solid–State Electronics 43 (1999) 923.        [ Links ]

5. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297 (2002) 2229.        [ Links ]

6. G. Min and D.M. Rowe, Appl. Energy 83 (2006) 133.        [ Links ]

7. G.N. Hatsopoulos and E.P. Gyftopoulos, Thermionic Energy Conversion–Vol 1: Processes and Devices (Cambridge: MIT Press, 1973).        [ Links ]

8. G.D. Mahan, J. Appl. Phys. 76 (1994) 4362.        [ Links ]

9. A. Shakouri and J.E. Bowers, Appl. Phys. Lett. 71 (1997) 1234.        [ Links ]

10. G.D. Mahan and L.M. Woods, Phys. Rev. Lett. 80 (1998) 4016.        [ Links ]

11. C.B. Vining and G.D. Mahan, J. Appl. Phys. 86 (1999) 6852.        [ Links ]

12. M.D. Ulrich, P.A. Barnes, and C.B. Vining, J. Appl. Phys. 90 (2001) 1625.        [ Links ]

13. D. Vashaee and A. Shakouri, Phys. Rev. Lett. 92 (2004) 106103.        [ Links ]

14. T.E. Humphrey, M.F. O'Dwyer, and H. Linke, J. Phys. D: Appl. Phys. 38 (2005) 2051.        [ Links ]

15. M.F. O'Dwyer, T.E. Humphrey, R.A. Lewis, and C. Zhang, J. Phys. D: Appl. Phys. 39 (2006) 4153.        [ Links ]

16. M.F. O'Dwyer, R.A. Lewis, and C. Zhang, J. Phys. D: Appl. Phys. 40 (2007) 1167.        [ Links ]

17. R.D. Astumian, Science 276 (1997) 917.        [ Links ]

18. I. Derényi and R.D. Astumian, Phys. Rev. E 59 (1999) 6219.        [ Links ]

19. T. Hondou, and K. Sekimoto, Phys. Rev. E 62 (2000) 6021.        [ Links ]

20. M. Asfaw and M. Bekele, Eur. Phys. J. B 38 (2004) 457.        [ Links ]

21. P. Reimann, Phys. Rep. 361 (2002) 57.        [ Links ]

22. C. Van den Broeck and R. Kawai, Phys. Rev. Lett. 96 (2006) 210601.        [ Links ]

23. M. van den Broek and C. Van den Broeck, Phys. Rev. Lett. 100 (2008) 130601.        [ Links ]

24. G.D. Mahan J.O. Sofo, and M. Bartkowiak, J. Appl. Phys. 83 (1998) 4683.        [ Links ]

25. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer, 2001).        [ Links ]

26. T. Hondou and K. Sekimoto, Phys. Rev. E 62 (2000) 6021.        [ Links ]

27. J.M.R. Parrondo and B. Jiménez de Cisneros, Appl. Phys. A 75 (2002) 179.        [ Links ]

28. P. Reimann, M. Grifoni, and P. Hänggi, Quantum ratchets. Phys. Rev. Lett. 79 (1997) 10.        [ Links ]

29. P. Reimann, Phys. Rep. 361 (2002) 57.        [ Links ]

30. H. Linke et al., Science 286 (1999) 2314.        [ Links ]

31. S. Yukawa, G. Tatara, M. Kikuchi, and H. Matsukawa, Quantum ratchet. Physica B 284 (2000) 1896.        [ Links ]

32. V.S. Khrapai, S. Ludwig, J.P. Kotthaus, H.P. Tranitz, and W. Wegscheider, Phys. Rev. Lett. 97 (2006) 176803.        [ Links ]

33. V.S. Khrapai, S. Ludwig, J.P. Kotthaus, H.P. Tranitz, and W. Wegscheider, Phys. Rev. Lett. 99 (2007) 096803.        [ Links ]

34. E.A. Hoffmann and H. Linke, J. Low Temp. Phys. 154 (2009) 161.        [ Links ]

35. H. Linke et al., Europhys. Lett. 44 (1998) 341.        [ Links ]

36. H. Linke et al., Europhys. Lett. 45 (1999) 406.        [ Links ]

37. H. Linke et al., Phys. Rev. B 61 (2000) 15914.        [ Links ]

38. T.E. Humphrey, H. Linke, and R. Newbury, Physica E 11 (2001) 281.        [ Links ]

39. H. Linke et al., Appl. Phys. A 75 (2002) 237.        [ Links ]

40. H. Linke, T.E. Humphrey, R.P. Taylor, A.P. Micolich, and R. Newbury, Physica B 314 (2002) 464.        [ Links ]

41. T.E. Humphrey, R. Newbury , R.P. Taylor, and H. Linke, Phys. Rev. Lett. 89 (2002) 6801.        [ Links ]

42. T.E. Humphrey, Ph. D. Thesis (University of New South Wales, Australia, 2003).        [ Links ]

43. B. Andresen, R.S. Berry, M.J. Ondrechen, and P. Salamon, Acc. Chem. Res. 17 (1984) 266.        [ Links ]

44. A. Bejan, J. Appl. Phys. 79 (1996) 1191.        [ Links ]

45. R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, and A.M. Tsirlin Thermodynamic Optimization of Finite Time Processes (Chichester: Wiley, 1999).        [ Links ]

46. L. Chen, C. Wu, and F. Sun, J. Non–Equilib. Thermodyn. 24 (1999) 327.        [ Links ]

47. C. Wu, L. Chen, and J. Chen, Recent Advances in Finite Time Thermodynamics. (New York: Nova Science Publishers, 1999) p. 560.        [ Links ]

48. L. Chen and F. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization (New York: Nova Science Publishers, 2004) p. 240.        [ Links ]

49. L. Chen, Finite–Time Thermodynamic Analysis of Irreversible Processes and Cycles. (Higher Education Press, Beijing, 2005) p. 280.        [ Links ]

50. W. Muschik and K.H. Hoffmann, J. Non–Equilib. Thermodyn. 31 (2006) 293.        [ Links ]

51. M. Feidt, Int. J. Exergy 5 (2008) 500.        [ Links ]

52. S. Sieniutycz and J. Jezowski, Energy Optimization in Process Systems (Elsevier, Oxford, UK, 2009).        [ Links ]

53. S. Velasco, J.M.M Roco, A. Medina, and A.C. Hernández, J. Phys. D: Appl. Phys. (2001) 34 1000.        [ Links ]

54. Z.C. Tu, J. Phys. A: Math. Theor. 41 (2008) 312003.        [ Links ]

55. B.Q. Ai , H.Z. Xie, D.H. Wen, X.M. Liu, and L.G. Liu, Eur. Phys. J. B 48 (2005) 101.        [ Links ]

56. T. Schmiedl and U. Seifert, Europhys. Lett. 81 (2008) 20003.        [ Links ]

57. B. Lin and J. Chen, J. Phys. A: Math. Theor. 42 (2009) 075006.        [ Links ]

58. M. Esposito, K. Lindenberg, and C. Van den Broeck, Europhys. Lett. 85 (2009) 60010.        [ Links ]

59. F.L. Curzon and B. Ahlborn, Am. J. Phys. 43 (1975) 22.        [ Links ]

60. J.Z. He, X.M. Wang, and H.N. Liang, Phys. Scr. 80 (2009) 035701.        [ Links ]

61. X. Fan et al. Appl. Phys. Lett. 78 (2001) 1580.        [ Links ]

62. D. Vashaee and A. Shakouri, J. Appl. Phys. 95 (2004) 1233.        [ Links ]

63. M.F. O'Dwyer, R.A. Lewis, C. Zhang, and T.E. Humphrey Phys. Rev. B 72 (2005) 205330.        [ Links ]

64. T.E. Humphrey, M.F. O'Dwyer, C. Zhang, and R.A. Lewis, J. Appl. Phys. 98 (2005) 026108.        [ Links ]

65. T.E. Humphrey and H. Linke, Phys. Rev. Lett. 94 (2005) 096601.        [ Links ]

66. M.F. O'Dwyer, T.E. Humphrey, and H. Linke, Nanotechnology 17 (2006) S338.        [ Links ]

67. M.F. O'Dwyer, T.E. Humphrey, R.A. Lewis, and C. Zhang J. Phys. D: Appl. Phys. 42 (2009) 035417.        [ Links ]

68. G. Chen and A. Shakouri, J. Heat Transfer 124 (2002) 242.        [ Links ]

69. S.T. Huxtable et al. Appl. Phys. Lett. 80 (2002) 1737.        [ Links ]

70. W. Kim et al. Appl. Phys. Lett. 88 (2006) 242107.        [ Links ]

71. A. Bejan, Int. J. Heat Mass Transfer 31 (1988) 1211.        [ Links ]

72. A. Bejan, Int. J. Heat Mass Transfer 32 (1989) 1631.        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons