SciELO - Scientific Electronic Library Online

 
vol.56 issue2Microreología de polímeros asociativos multiuniones en solución acuosa author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.56 n.2 México Apr. 2010

 

Revisión

 

The problem of glass formation and the low frequency vibrational modes anomalies

 

G.G. Naumis and J.R. Romero–Arias

 

Instituto de Física, Dpto. de Física–Química, Universidad Nacional Autónoma de México, Apartado Postal 20–364, México 01000, D.F, México.

 

Recibido el 11 de noviembre de 2009
Aceptado el 16 de febrero de 2010

 

Abstract

In this article, we give a short review of the theoretical problems concerning the formation of disordered materials (known as glasses). Then we show how this problem is related to the anomalies in the low frequency vibrational modes observed in glasses. Rigidity theory and the energy landscape topology picture is used to decode how this relationship is built for network glasses. Finally, the problem of the speed of cooling and the ability to reach thermal equilibrium in glasses is explored using a simple model with non–linear interactions. The results are also interesting in soft–matter and protein folding.

Keywords: Glass transition; glasses; low frequency modes.

 

Resumen

En este trabajo se presenta una revisión de los problemas concernientes a la formación de materiales con estructuras desordenadas, llamados vidrios, y su relación con el exceso de modos vibracionales de baja frecuencia. La teoría de la rigidez y la topología del paisaje de energías se usan para entender como surge dicha relación. Finalmente, el problema de la velocidad mínima de enfriamiento y la habilidad de formar vidrios se estudia en el mismo contexto, pero usando un modelo de interacción no lineal. Los resultados son interesantes tanto para materia suave como para el problema del doblamiento de proteínas.

Descriptores: Transición vítrea; vidrios; modos de baja frecuencia.

 

PACS: 64.70.P–; 64.70.Q–; 63.50.Lm

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

We thank DGAPA–UNAM projects IN–117806. and CONA–CyT 50368 for financial support and C. Moukarzel for pointing out to us the rigidity properties of the second neighbor spring chain. Calculations were carried at the KanBalam and Baklitz supercomputers of DGSCA–UNAM.

 

References

1. I. Bernal, Historia General de México (El Colegio de México, México, 2000).        [ Links ]

2. P.W. Anderson, Science 267 (1995) 1615.        [ Links ]

3. J.C. Phillips, PNAS 106 (2009) 15534.        [ Links ]

4. J. Jackle, Rep. Pro. Phys. 49 (1986) 171.        [ Links ]

5. A.J. Liu and S.R. Nagel, Nature 396 (1998) 21.        [ Links ]

6. A. Huerta, G.G. Naumis, D.T. Wasan, D. Henderson, and A. Trokhymchuk, J. of Chem. Phys. 120 (2004) 1506.        [ Links ]

7. S. Ciliberti,P. De Los Rios, and F. Piazza, Phys. Rev. Lett. 96 (2006) 198103.        [ Links ]

8. J.C. Phillips, Rep. Prog. Phys. 59 (1996) 1133.        [ Links ]

9. G.G. Naumis and R. Kerner, J. of Non–Cryst. Solids 231 (1998) 111.        [ Links ]

10. R. Kerner, Physica B 215 (1995) 267.        [ Links ]

11. R. Kerner and G.G. Naumis, J. of Phys: Condens. Matter 12 (2000) 1641.        [ Links ]

12. M. Micoulaut and G.G. Naumis, Europhys Lett. 47 (1999) 568.        [ Links ]

13. G.G. Naumis, R.A. Barrio, R. Kerner, and M. Micoulaut, Rev. Mex. de Fís. 44 (1998) 80.        [ Links ]

14. P.G. Debenedetti, Metastable Liquids (Princeton Unv. Press, 1996).        [ Links ]

15. P.G. Debenedetti and F.H. Stillinger, Nature 410 (2000) 259.        [ Links ]

16. M. Tatsumisago, B.L. Halfpap, J.L. Green, S.M. Lindsay, and C.A. Angell, Phys. Rev. Lett. 64 (1990) 1549.        [ Links ]

17. K. Binder and W. Kob, Glassy materials and disordered solids (World Scientific, Singapoure, 2005).        [ Links ]

18. J.C. Phillips, J. Non–Cryst. Solids 34 (1979) 153.        [ Links ]

19. M.F. Thorpe, J. Non–Cryst. Solids 57 (1983) 355.        [ Links ]

20. J.C. Phillips, in Rigidity Theory and Applications, ed. by M. Thorpe and P.M. Duxbury (Kluwer Academic/Plenum Publishers, New York, 1999).        [ Links ]

21. G.G. Naumis an H. Flores–Ruiz, Phys. Rev. B 78 (2008) 094203.        [ Links ]

22. P. Lucas, E.A. King, A.D. Horner, and S.K. Sundaram, J. of Non–Cryst. Solids 352 (2006) 2067.        [ Links ]

23. P. Lucas, J. of Phys.: Cond. Mat. 18 (2006) 5629.        [ Links ]

24. P. Boolchand et al., 5 (2002) 713.

25. A. Angell, Nature 393 (1998) 521.        [ Links ]

26. M. Goldstein, J. of Chem. Phys. 64 (1976) 11.        [ Links ]

27. G. Fabricius and D.A. Stariolo, Physica A 331 (2004) 90.        [ Links ]

28. G.G. Naumis, Phys. Rev. E 71 (2005) 056132.        [ Links ]

29. H. He and M.F. Thorpe, Phys. Rev. Lett. 54 (1985) 2107.        [ Links ]

30. D. Selvanathan, W.J. Bresser, and P. Boolchand, Phys. Rev. B 61 (2000) 15061.        [ Links ]

31. P. Boolchand, Vibrational Excitations in glasses: rigidity transition and Lamb–Mössbauer Factors, in: Insulating and semiconducting glasses, ed. by P. Boolchand (World Scientific, Singapore, 2000).        [ Links ]

32. Y. Wang et al. Phys. Rev. Lett. 87 (2001) 185503.        [ Links ]

33. M. Wyart, Ann. Phys. Fr. 30 (2005) 1.        [ Links ]

34. C.F. Moukarzel, Phys. Rev. Lett. 81 (1998) 1634.        [ Links ]

35. C.F. Moukarzel, Phys. Rev. E 68 (2003) 056104.        [ Links ]

36. A. Huerta and G.G. Naumis, Phys. Lett. A 299 (2002) 660.        [ Links ]

37. A. Huerta and G.G. Naumis, Phys. Rev. B 66 (2002) 184204.        [ Links ]

38. A. Huerta and G.G. Naumis, J. of Non–Cryst. Solids 329 (2003) 100.        [ Links ]

39. A. Huerta and G.G. Naumis, Phys. Rev. Lett. 90 (2003) 145701.        [ Links ]

40. A. Kraemer and G.G. Naumis, J. of Chem. Phys. 128 (2008) 134516.        [ Links ]

41. T.L. Hill, An introduction to statistical thermodynamics (Dover, New York, 1986).        [ Links ]

42. G.G. Naumis, Phys. Rev. E 71 (2005) 026114.        [ Links ]

43. P. Boolchand et al., Solids State Ionics 39 (1990) 81.        [ Links ]

44. W.A. Kamitakahara et al., Phys. Rev. B 44 (1991) 94.        [ Links ]

45. M.M. Tirion, Phys. Rev. Lett. 77 1905 (1996).        [ Links ]

46. F. Pontiggia, G. Colombo, C. Micheletti, and H. Orland, Phys Rev Lett. 98 (2007) 048102.        [ Links ]

47. J.C. Dyre, T. Christensen, and N. B. Olsen, J. Non–Cryst. Solids 351 (2006) 4635.        [ Links ]

48. G.G. Naumis, Phys. Rev. B 61 (2000) R9205.        [ Links ]

49. P.K. Gupta and J.K. Mauro, J. of Chem. Physics 130, (2009) 094503.        [ Links ]

50. J.C. Mauro, Y. Yue, A. J. Ellison, P.K. Gupta, and D.C. Allan, PNAS 106 (2009) 19780.        [ Links ]

51. F.H. Stillinger, Phys. Rev. E 59 (1999) 48.        [ Links ]

52. P. Duxbury, D. Jacobs, M. Thorpe, and C. Moukarzel, Phys. Rev. E 55 (1999) 2084.        [ Links ]

53. R.W. Hall and P.G. Wolynes, J. Chem. Phys. 86 (1987) 2943.        [ Links ]

54. D. Tabor, Gases, liquids and solids (Cambridge University Press, Cambridge, 1996).        [ Links ]

55. W.A. Phillips, U. Buchenau, N. Nücker, A.J. Dianoux, and W. Petry, Phys. Rev. Lett. 63 (1989) 2381.        [ Links ]

56. U. Buchenau and R. Zorn, Europhys. Lett. 18 (1992) 523.        [ Links ]

57. G.G. Naumis, Phys. Rev. B 73 (2006) 172202.        [ Links ]

58. G.G. Naumis, J. of Non–Cryst. Solids 352 (2006) 4685.        [ Links ]

59. A.N. Sreeram, D.R. Swiler, and A.K. Varshneya, J. Non–Cryst. Solids 127 (1991) 287.        [ Links ]

60. J.C. Phillips, in: Rigidity Theory and Applications, ed. J.C. Phillips and P.M. Duxbury, Kluwer Academic/Plenum Publishers (New York, 1999) p. 279.        [ Links ]

61. D.V. Louzguine–Luzgin, T. Saito, J. Saida, and A. Inoue, Journal Materials Research 23 (2008) 515.        [ Links ]

62. E. Fermi, J. Pasta, and S. Ulam, Los Alamos report L.A.1940, Enrico Fermi, Collected Papers II (1955) (Univ. Chicago Press, Chicago 1965).        [ Links ]

63. M. Toda, Theory of Non–Linear Lattices (Springer–Verlag, Berlin, 1988).        [ Links ]

64. D.K. Campbell, S. Flach, and Y.S. Kivshar, Physics Today 43 (2004).        [ Links ]

65. J. Ford, J. Math. Phys. 2 (1961) 387.        [ Links ]

66. R. Reigada, A. Sarmiento, and K. Linderberg, Phys. Rev. E 64 (2001) 066113.        [ Links ]

67. R. Reigada, A. Sarmiento, and K. Linderberg, Phys. Rev. E 64, 066608 (2001).        [ Links ]

68. A. Ponno, in: Chaotic Dynamics and Transport in Classical and Quantum Systems, Proceedings of the NATO Advanced Study Institute on International Summer School on Chaotic Dynamics and Transport in Classical and Quantum Systems Cargèse, Corsica 18–30 August 2003, Vol. 182 (Springer Netherlands, Amsterdam, 2005) p. 431.        [ Links ]

69. I. Cerón, G.G. Naumis, F. Salazar, and C. Wang Phys. Lett. A 337 (2005) 141.        [ Links ]

70. R. Reigada, A. Sarmiento, and K. Lindenberg, Phys. Rev. E 66 (2002) 046607.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License