SciELO - Scientific Electronic Library Online

 
vol.55 número4A numerical analysis of the supersymmetric flavor problem and radiative fermion massesThermal and optical characterization of pigments attached to cellulose substrates by means of a self-normalized photoacoustic technique índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.55 no.4 México ago. 2009

 

Investigación

 

Effect of heat transfer on the performance of a thermoelectric heat pump driven by a thermoelectric generator

 

Lingen Chen*, Fankai Meng, and Fengrui Sun

 

Postgraduate School, Naval University of Engineering, Wuhan 430033, P.R. China.

 

*. To whom all correspondence should be addressed:
Fax: 0086–27–83638709;
Tel: 0086–27–83615046,

e–mail: lgchenna@yahoo.com ; lingenchen@hotmail.com

 

Recibido el 13 de enero de 2009
Aceptado el 9 de junio de 2009

 

Abstract

A model of a thermoelectric heat pump driven by a thermoelectric generator with external heat transfer irreversibility is proposed. The performance of the combined thermoelectric heat pump device obeying Newton's heat transfer law is analyzed using the combination of finite time thermodynamics and non–equilibrium thermodynamics. Two analytical formulae for heating load versus working electrical current, and the coefficient of performance (COP) versus working electrical current, are derived. For a fixed total heat transfer surface area of four heat exchangers, the allocations of the heat transfer surface area among the four heat exchangers are optimized for maximizing the heating load and the COP of the combined thermoelectric heat pump device. For a fixed total number of thermoelectric elements, the ratio of the number of thermoelectric elements of the generator to the total number of thermoelectric elements is also optimized for maximizing both the heating load and the COP of the combined thermoelectric heat pump device. The influences of thermoelectric element allocation and heat transfer area allocation are analyzed by detailed numerical examples. The optimum working electrical currents for maximum heating load and maximum COP at different total numbers of thermoelectric elements and different total heat transfer areas are provided, respectively.

Keywords: Combined thermoelectric device; thermoelectric generator; thermoelectric heat pump; heat transfer; finite–time thermodynamics; non–equilibrium thermodynamics.

 

Resumen

En el presente trabajo se propone un modelo de una bomba de calor termoeléctrica controlada por un generador termoeléctrico con transferencia de calor externa irreversible. Se analiza el desempeño de la bomba de calor combinada, la cual obedece a la ley de Newton de transferencia de calor, usando la combinación de termodinámica de tiempo finito y termodinámica fuera de equilibrio. Se obtienen dos formulas analíticas: para la carga de calor y para el coeficiente de desempeño, ambas en función del trabajo de corriente eléctrica. Se realiza una optimización de la posición de la superficie de transferencia de calor entre cuatro intercambiadores para maximizar la carga de calor y el coeficiente de desempeño de la bomba de calor termoeléctrica combinada. Para este mismo fin, se optimiza también la razón entre el número de elementos termoeléctricos del generador y el total. Se analiza, mediante ejemplos numéricos detallados, la influencia entre las posiciones del elemento termoeléctrico y del área de transferencia de calor.

Descriptores: Dispositivo termoeléctrico combinado; generador termoeléctrico; bomba de calor termoeléctrica; transferencia de calor; termodinámica de tiempo finito; termodinámica fuera de equilibrio.

 

PACS: 05.30–d; 05.70.–a; 05.60.Gg

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This paper is supported by the Program for New Century Excellent Talents at the University of P. R. China (Project No. NCET–04–1006) and The Foundation for the Author of National Excellent Doctoral Dissertation of P.R. China (Project No. 200136). The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript.

 

References

1. S.W. Angrist Direct Energy Conversion. 4th ed. (Boston: Allyn and Bacon Inc., 1992).        [ Links ]

2. F.J. di Salvo Thermoelectric cooling andpower generation 285 (1999) 703.        [ Links ]

3. Ma X and S.B. Riffat, App. l. Thermal Engng. 23 (2003) 913.        [ Links ]

4. A. Bejan, Advanced Engineering Thermodynamics, 2nd ed. (New York: Wiley, 1997).        [ Links ]

5. A. Sisman and H. Yavuz, The Int. J. 20 (1995) 573.        [ Links ]

6. J. Chen and Z. Yan, J. Appl. Phys. 79 (1996) 8823.        [ Links ]

7. J. Chen, Z. Yan, and L. Wu, The Int. J. 22 (1997) 979.        [ Links ]

8. D.M. Rowe and G. Min J. Power Sources 73 (1998) 193.        [ Links ]

9. S.A. Omer, and D.G. Infield, Sol. Energy Mater. & Sol. Cell 53 (1998) 67.        [ Links ]

10. I.D. Mayergoyz, and D. Andrel, J. Appl. Phys. 90 (2001) 3019.        [ Links ]

11. M. Naji, M. Alata, and M.A. Al–Nimr, J. Power & Energy 217 (2003) 615.        [ Links ]

12. R. Y. Nuwayhid, A. Shihadeh, and N. Ghaddar, Energy Convers. Mgnt, 46 (2005) 1631.        [ Links ]

13. J.L. Yu, H. Zhao, J. Power Sources 172 (2007) 428.        [ Links ]

14. A.J. Mortlock, Am. J. Phys. 33 (1965) 813.        [ Links ]

15. S.B. Riffat, X. Ma, and G. Qiu, Int. J. ambiént Energy, (2004) 25 177.        [ Links ]

16. S.B Riffat and X. Ma, Int. J. Energy Res. 28 (2004) 1231.        [ Links ]

17. S.B Riffat, Ma X, and R. Wilson, Appl. Thermal Engng. 26 (2006) 494.        [ Links ]

18. M. Cosnier, G. Fraisse, and L. Luo, Int. J. Refrig. (2008) 31 1051.        [ Links ]

19. X. Chen, B. Lin, and J. Chen, Appl. Energy, 83 (2006) 681.        [ Links ]

20. N.M. Khattab and E.T. El Shenawy, Energy Convers. Mgmt. (2006) 47 407.        [ Links ]

21. F. Meng, L. Chen, F. Sun, and C. Wu Int. J. ambiént Energy in press.        [ Links ]

22. B. Andresen, R.S. Berry, M.J. Ondrechen ,and P. Salamon, Acc. Chem. Res. 17 (1984) 266.        [ Links ]

23. F. Angulo–Brown, J. Appl. Phys. (1991) 69 7465.        [ Links ]

24. M. Feidt, Thermodynamique et Optimisation Energetique des Systems et Procedes 2nd Ed. (Paris: Technique et Documentation, Lavoisier,in French, 1996).        [ Links ]

25. A. Bejan, J. Appl. Phys. 79 (1996) 1191.        [ Links ]

26. L.A. Arias–Hernandez and F. Angulo–Brown, J. Appl. Phys. 81 (1997) 2973.        [ Links ]

27. F. Angulo–Brown, L.A. Arias–Hernandez and Paez–Hernandez. J. Phys. D: Appl. Phys. 32 (1999) 1415.        [ Links ]

28. R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast and A.M. Tsirlin, (Thermodynamic Optimization of Finite Time Processes. Chichester: Wiley, 1999).        [ Links ]

29. L. Chen, C. Wuand, and F. Sun, J. Non–Equilib. Thermodyn. 24 (1999) 327.        [ Links ]

30. J.M Gordon and K.C. Ng Cool, Thermodynamics. Cambridge: (Cambridge Int. Science Publishers, UK, 2000).        [ Links ]

31. D. Ladino–Luna, Rev. Mex. Fís. 48 (2002) 575.        [ Links ]

32. A. Durmayaz, O.S. Sogut, B. Sahin and H. Yavuz, Prog. Energy & Combus. Sci. 30 (2004) 175.        [ Links ]

33. L. Chen, F. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization. (New York: Nova Science Publishers, 2004).        [ Links ]

34. D. Ladino–Luna and R.T. Paez–Hernandez Rev. Mex. Fís. (2005) 5154.        [ Links ]

35. G. Aragon–González, A. Canales–Palma, A. Lenon–Galicia, and M. Musharrafie–Martinez, Rev. Mex. Fís. 51 (2005) 32.        [ Links ]

36. R. Páez–Hernández, F. Angulo–Brown, and M. Santillán, Engine. J. Non–Equilibrium Thermodynamics (2006) 31 173.        [ Links ]

37. M.A. Barranco–Jimenez, J.C. Chimal–Eguía, and F. Angulo–Brown, Rev. Mex. Fís. (2006) 52 205.        [ Links ]

38. G. Aragon–González, A. Canales–Palma, A. Leon–Galicia, and J.R. Morales–Gómez, Rev. Mex. Fís. 52 (2006) 309.        [ Links ]

39. C.A. Herrera, M.E. Rosillo, and L. Castano, Rev. Mex. Fís. 54 (2008)118.        [ Links ]

40. M.A. Barranco–Jimenez, N. Sánchez–Salas, and F. Angulo–Brown, Rev. Mex. Fís. 54 (2008) 284.        [ Links ]

41. F. Sun, W. Chen, and L. Chen, Chin. J. Engng. Thermophys. (1993) 14 13. (in Chinese).        [ Links ]

42. J.M. Gordon, Am. J. Phys. 59 (1991) 551.        [ Links ]

43. C. Wu, Energy Convers. Mgmt. (1993) 34 1239.        [ Links ]

44. D.C. Agrawal and V.J. Menon, J. Phys. D: Appl. Phys. (1997) 30 357.        [ Links ]

45. J. Chen, J. Appl. Phys., 1996, 79 2717.        [ Links ]

46. J. Chen and B. Andresen, Int. J. Pow. Energy System 17 (1997) 23.        [ Links ]

47. J. Chen and C. Wu, J. Energy Res. Tech. 122 (2000) 61.        [ Links ]

48. R.Y Nuwayhid and F. Monkalled, Energy Convers. Mgmt. 45 (2003) 647.        [ Links ]

49. L. Chen, J. Gong, F. Sun, and C. Wu, Int. J. Therm. Sci. (2002) 41 95.        [ Links ]

50. J. Chen, B. Lin, H. Wang, and G. Lin, Semicond. Sci. Thenol. 15 (2000) 184.        [ Links ]

51. D.T. Crane and G.S. Jackson, Energy Convers. Mgnt. 45 (2004) 1565.        [ Links ]

52. L. Chen, F. Sun, and C. Wu, Appl. Energy 81 (2005) 358.        [ Links ]

53. M. Chen, L. Rosendahl, I. Bach, T. Condra, and J. Pedersen, Am. J. Phys. 75 (2007) 815.        [ Links ]

54. L. Chen, F. Sun, and C. Wu Int. J. ambiént Energy 28 (2007) 135.        [ Links ]

55. L. Chen, J. Li, F. Sun, and C. Wu, Appl. Energy 82 (2005) 300.        [ Links ]

56. C. Wu and W. Schulden, Energy Convers. Mgmt. 35 (1994) 459.        [ Links ]

57. L. Chen, C. Wu, and F. Sun, Appl. Thermal Engng. 17 (1997) 103.        [ Links ]

58. Y. Bi, L. Chen, C. Wu, and F. Sun, J. Non–Equilib. Thermodyn. 26 (2001) 41.        [ Links ]

59. L. Chen, J. Li, F. Sun, and C. Wu, Int. J. ambiént Energy 28 (2007) 189.        [ Links ]

60. L. Chen, J. Li, F. Sun, and C. Wu, Appl. Energy 85 (2008) 641.        [ Links ]

61. D. Xu, Application technology of semiconductor refrigerating (2nd Edition). (Shanghai: Shanghai Jiaotong University Press. 309, 1999).        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons