SciELO - Scientific Electronic Library Online

 
vol.55 número2Modelo del voltaje de descarga en depósitos de ZrO X por erosión iónica reactivaSpectral reflectance curves for multispectral imaging, combining different techniques and a neural network índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.55 no.2 México abr. 2009

 

Investigación

 

Exergy–based ecological optimization for an endoreversible variable–temperature heat reservoir air heat pump cycle

 

Yuehong Bi a,b, Lingen Chenb,*, and Fengrui Sunb

 

ª Institute of Civil & Architectural Engineering, Beijing University of Technology, Beijing 100124, P.R. China,

b Postgraduate School, Naval University of Engineering, Wuhan 430033, P.R. China, Tel: 0086–27–83615046; Fax: 0086–27–83638709 e–mail: lgchenna@yahoo.com *; lingenchen@hotmail.com *

 

Recibido el 1 de diciembre de 2008
Aceptado el 20 de enero de 2009

 

Abstract

An ecological performance analysis and optimization based on the exergetic analysis is carried out in this paper for an endoreversible air heat pump cycle with variable–temperature heat reservoirs. An exergy–based ecological optimization criterion, which consists of maximizing a function representing the best compromise between the exergy output rate and exergy loss rate (entropy generation rate and environment temperature product) of the heat pump cycle, is taken as the objective function. The analytical relation of the exergy–based ecological function is derived. The effects of pressure ratio, the effectiveness of the heat exchangers, the inlet temperature ratio of the heat reservoirs and the ratio of hot–side heat reservoir inlet temperature to ambiént temperature on ecological function are analyzed. The cycle performance optimizations are performed by searching the optimum distribution of heat conductance of the hot– and cold–side heat exchangers for fixed total heat exchanger inventory and the optimum heat capacity rate matching between the working fluid and the heat reservoirs, respectively. The influences of some design parameters, including heat exchanger inventory and heat capacity rate of the working fluid on the optimal performance of the endoreversible air heat pump are provided by numerical examples. The results show that the exergy–based ecological optimization is an important and effective criterion for the evaluation of air heat pumps.

Keywords: Exergy–based ecological function; endoreversible air heat pump; variable–temperature heat reservoir; finite time thermodynamics.

 

Resumen

Un análisis y una optimización ecológicos de funcionamiento basados en el análisis exergetic se realiza en este papel para un ciclo endoreversible de la pompa de calor del aire con los depósitos del calor de la variable–temperatura. Un criterio ecológico exergy–basado de la optimización, que consiste en el maximizar de una función que representa el mejor compromiso entre el índice de salida del exergy y el índice de la perdida del exergy (producto de la temperatura de la tarifa y del ambiénte de la generación de la entropía) del ciclo de la pompa de calor, se toma como la función objetiva. La relación analítica de la función ecológica exergy–basada se deriva. Los efectos del cociente de la presión, de la eficacia de los cambiadores de calor, del cociente de la temperatura de la entrada de los depósitos del calor y del cociente de la temperatura de la entrada del depósito del calor del caliente–lado a la temperatura ambiénte en la función ecológica se analizan. Las optimizaciones del funcionamiento del ciclo son realizadas buscando la distribución óptima de la conductancia del calor de los cambiadores calientes y del frío–lado de calor para el inventario total fijo del cambiador de calor y la tarifa óptima de la capacidad de calor que empareja entre el líquido de funcionamiento y los depósitos del calor, respectivamente. Las influencias de algunos parámetros de diseño, incluyendo inventario del cambiador de calor y el índice de capacidad de calor del líquido de funcionamiento en el funcionamiento óptimo de la pompa de calor endoreversible del aire son proporcionadas por ejemplos numéricos. Los resultados demuestran que la optimización ecológica exergy–basada es un criterio importante y eficaz para la evaluación de las pompas de calor del aire.

Descriptores: Función ecológica exergy–basada; pompa de calor endoreversible del aire; depósito del calor de la variable–temperatura; termodinámica de tiempo finitas.

 

PACS: 01.40G; 05.70.–a; 64.70.F

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This paper is supported by Scientific Research Common Program of Beijing Municipal Commission of Education (Project No: KM200710005034) and Program for New Century Excellent Talents in University of P. R. China (Project No: NCET–04–1006).

 

References

1. G. Angelino and C. Invernizzi, Int. J. Refrig. 18 (1995) 272.        [ Links ]

2. J.S. Fleming, B.J.C. Van der Wekken, J.A Mcgovern, and R.J.M. Van Gerwen, Int. J. Energy Res. 22 (1998) 639.        [ Links ]

3. J.E Braun, P.K. Bansal, and E.A. Groll, Int. J. Refrig. 25 (2002) 954.        [ Links ]

4. B. Andresen, R.S. Berry, M.J. Ondrechen, and P. Salamon, Acc. Chem.Res. 17 (1984) 266.        [ Links ]

5. Z. Yan and J.A. Chen, J. Phys. D: Appl. Phys. 23 (1990) 136.        [ Links ]

6. D.C. Agrawual and V.J. Menon, J. Appl. Phys. 74 (1993) 2153.        [ Links ]

7. J.S. Chiu, C.J. Liu, and C.K. Chen, J. Phys. D: Appl. Phys. 28 (1995) 1314.        [ Links ]

8. M. Feidt, Thermodynamique et Optimisation Energetique des Systems et Procedes (2nd Ed.). (Paris: Technique et Documentation, Lavoisier, 1996, in French).        [ Links ]

9. A. Bejan, Entropy Generation Minimization. (Boca Raton FL: CRC Press, 1996.)        [ Links ]

10. R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast and A.M. Tsirlin, Thermodynamic Optimization of Finite Time Processes. (Chichester: Wiley, 1999.)        [ Links ]

11. L. Chen, C. Wu, and F. Sun, J. Non–Equilibrium Thermodyn. 24 (1999) 327.        [ Links ]

12. D. Ladino–Luna, Rev. Mex. Fis. 48 (2002) 575.        [ Links ]

13. L. Chen, and F. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization. (New York: Nova Science Publishers, 2004).        [ Links ]

14. Ladino–Luna D, Paez–Hernández R T. Non–endoreversible Carnot refrigerator at maximum cooling power. Revista Mexicana de Fisica, 2005, 51 (2): 54–58.        [ Links ]

15. G. Aragon–González, A. Canales–Palma, A. Lenon–Galicia, and M. Musharrafie–Martinez, Rev. Mex. Fis. 51 (2005) 32.        [ Links ]

16. L. Chen, Finite–Time Thermodynamic Analysis of Irreversible Processes and Cycles. (Higher Education Press, Beijing, 2005.)        [ Links ]

17. C.A. Herrera, M.E. Rosillo, and L. Castaño, Rev. Mex. Fis. 54 (2008) 118.        [ Links ]

18. G. Aragon–González, A. Canales–Palma, A. Leon–Galicia, J.R. Morales–Gomez, Brazilian J. Physics 38 (2008) 1.        [ Links ]

19. C. Wu, L. Chen, and F. Sun, Energy Convers. Mangt. 39 (1998) 445.        [ Links ]

20. L. Chen, N. Ni, C. Wu, and F. Sun, Int. J. Pow. Energy Sys. 21 (2001) 105.        [ Links ]

21. N. Ni, L. Chen, C. Wu, and F. Sun, Performance analysis for endoreversible closed regenerated Brayton heat pump cycles. Energy Convers. Mangt. 40 (1999) 393.        [ Links ]

22. L. Chen, N. Ni, F. Sun, and C. Wu, Int. J. Power Energy Sys. 19 (1999) 231.        [ Links ]

23. L. Chen, N. Ni, C. Wu, and F. Sun, Int. J. Energy Res. 23 (1999) 1039.        [ Links ]

24. Y. Bi, L. Chen, and F. Sun, Heating load, heating load density and COP optimizations for an endoreversible air heat pump Appl. Energy 85 (2008) 607.        [ Links ]

25. M.J. Moran, Availability Analysis—A Guide to Efficient Energy Use. (New York: ASME Press, 1989).        [ Links ]

26. T.J Kotas, The Exergy Method of Thermal Plant Analysis. (Melbourne FL: Krieger, 1995).        [ Links ]

27. A. Bejan, G. Tsatsaronis, and M. Moran, Thermal Design & Optimization. (New York: Wiley, 1996).        [ Links ]

28. I. Dincer and Y.A. Cengel, Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy, 3 (2001) 116.        [ Links ]

29. F. Angulo–Brown, J. Appl. Phys. 69 (1991) 7465.        [ Links ]

30. Z. Yan, J. Appl. Phys. 73 (1993) 3583.        [ Links ]

31. L. Chen, F. Sun, and W. Chen, J. Engng. Thermal Energy Pow. 9 (1994) 374.        [ Links ]

32. L. Chen, X. Zhu, F. Sun, and C.Wu, Exergy–based ecological optimization for a generalized irreversible Carnot heat pump. Appl. Energy (2007) 84 78.        [ Links ]

33. X. Zhu, L. Chen, F. Sun, C. Wu, Int. J. Exergy, (2005) 2 423.        [ Links ]

34. X. Zhu, L. Chen, F. Sun, and C. Wu, J. of Energy Institute 78 (2005) 5.        [ Links ]

35. S.K. Yagi, S.C. Kaushik, and R. Salohtra, J. Phys. D: Appl. Phys. 35 (2002) 2065.        [ Links ]

36. G. Qin, M. Li, and E.X. Cheng, Air Refrigerator. (National Defense Industry Press, Beijing, 1980).        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons