SciELO - Scientific Electronic Library Online

 
vol.55 número1Effects of indium doping on the structural and optical properties of CdSe thin films deposited by chemical bathRobustness of noise induced resonances índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.55 no.1 México feb. 2009

 

Investigación

 

Optimal configuration of heat engines for maximum efficiency with generalized radiative heat transfer law

 

Lingen Chen*, Hanjiang Song, Fengrui Sun, and Shengbing Wang

 

Postgraduate School, Naval University of Engineering, Wuhan 430033, P.R. China Fax: 0086–27–83638709 Tel: 0086–27–83615046. *e–mail: lgchenna@yahoo.com, lingenchen@hotmail.com

 

Recibido el 24 de noviembre de 2008
Aceptado el 7 de diciembre de 2009

 

Abstract

Optimal configuration of a class of endoreversible heat engines with generalized radiative heat transfer law [q ∞ Δ (Tn] has been determined by this paper. The optimal cycle that maximizes the efficiency of the engines with fixed input energy has been obtained using optimal–control theory, and the differential equations are solved by Taylor series expansion. It is shown that the optimal cycle for maximum efficiency has eight branches including two isothermal branches, four maximum–efficiency branches and two adiabatic branches. The interval of each branch has been obtained, as well as the solutions of the temperatures of heat reservoirs and working fluid. Numerical examples are given for the optimal configurations with n = — 1, n=1, n=2, n=3 and n=4, respectively. The results obtained are compared with each other and with those results obtained for maximum power output.

Keywords: Generalized radiative heat transfer law; endoreversible heat engine; maximum efficiency; optimal configuration; finite time thermodynamics; generalized thermodynamic optimization.

 

Resumen

En este artículo se determina la configuración óptima de una clase de motor térmico endoreversible con la ley generalizada de transferencia de claro radiativa [q ∞ Δ (Tn]. El ciclo óptimo que maximiza la eficiencia de los motores con una entrada de energía dada se obtiene usando la teoría del control óptimo y las ecuaciones diferenciales son resueltas mediante la expanción en series de Taylor. Se muestra que el ciclo óptimo para máxima eficiencia tiene ocho ramas, incluyendo dos ramas isotérmicas, cuatro de máxima eficiencia y dos adiabáticas. Se muestra el intervalo para cada rama, así como la temperatura del recipiente calorífico y del fluido de trabajo. Los ejemplo numéricos se muestran para la configuración óptima con n= — 1, n=1, n=2, n=3 y n=4. Los resultado obtenidos son comparados unos con otros, y con éstos se obtiene la potencia máxima de salida.

Descriptores: Leyes de transferencia de calor; motores endoreversibles; máxima eficiencia; configuración óptima; termodinámica de tiempos finitos.

 

PACS: 05.70.–a

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This paper is supported by the Program for New Century Excellent Talents in University of P. R. China (Project No 20041006) and The Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (Project No. 200136).

 

References

1. B. Andresen Finite–Time Thermodynamics. (Physics Laboratory II, University of Copenhagen, 1983).        [ Links ]

2. B. Andresen, P. Salamon, and R.S. Berry, Phys. Today (1984) 62.        [ Links ]

3. B. Andresen, R.S. Berry, M.J. Ondrechen, and P. Salamon, (Acc. Chem. Res. (1984) 266.        [ Links ]

4. S. Sieniutycz and P. Salamon, Advances in Thermodynamics. "Finite Time Thermodynamics and Thermoeconomics" (New York: Taylor Francis, 1990) 4.        [ Links ]

5. D.C. Agrawal and V.J. Menon, Eur. J. Phys. 11 (1990) 305.        [ Links ]

6. D.C. Agrawal and V.J. Menon, J. Appl. Phys. 74 (1993) 2153.        [ Links ]

7. D.C Agrawal, J.M Gordon, and M. Huleihil, Indian J. Engng. Mater. Sci. 1 (1994) 195.        [ Links ]

8. S. Sieniutycz and J.S. Shiner, J. Non–Equilib. Thermodyn. (1994) 303.        [ Links ]

9. A. Bejan, J. Appl. Phys. 79 (1996) 1191.        [ Links ]

10. K.H Hoffmann, J.M Burzler, and S. Schubert, J. Non– Equilib. Thermodyn. 22 (1997) 311.        [ Links ]

11. R.S Berry, V.A Kazakov, S. Sieniutycz, Z. Szwast, and A.M. Tsirlin Thermodynamic Optimization of Finite Time Processes. (Chichester: Wiley, 1999).        [ Links ]

12. L. Chen, C. Wu, and F. Sun, J. Non–Equilib. Thermodyn. 24 (1999) 327.        [ Links ]

13. P. Salamon, J.D. Nulton, G. Siragusa, T.R Andresen, and A. Limon Energy, The Int. J. 26 (2001) 307.        [ Links ]

14. D. Ladino–Luna, Rev. Mex. Fis. 48 (2002) 575.        [ Links ]

15. S. Sieniutycz, "Thermodynamic limits on production or consumption of mechanical energy in practical and industry systems." Progress Energy Combustion Science 29 (2003) 193.        [ Links ]

16. K.H. Hoffman, J. Burzler, A. Fischer, M. Schaller, and S. Schubert, J. Non–Equilib. Thermodyn. 28 (2003) 233.        [ Links ]

17. L. Chen, F. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization. (New York: Nova Science Publishers, 2004.)        [ Links ]

18. L. Chen, Finite time thermodynamic analysis of irreversible progresses and cycles. (Beijing: High Education Press, (in Chinese), 2005).        [ Links ]

19. S. Sieniutycz and H. Farkas, Variational and Extremum Principles in Macroscopic Systems. (London: Elsevier Science Publishers, 2005).        [ Links ]

20. D. Ladino–Luna and R.P Paez–Hernández, Rev. Mex. Fis., 51 (2005) 54.        [ Links ]

21. G. Aragon–González, A. Canales–Palma, A. Lenon–Galicia, and M. Musharrafie–Martinez, Rev. Mex. Fis. 51 (2005) 32.        [ Links ]

22. C.A Herrera, M.E Rosillo, and L. Castano Rev. Mex. Fis. 54 (2008) 118.        [ Links ]

23. G. Aragon–González, A. Canales–Palma, A. Leon–Galicia, and J.R. Morales–Gómez, Brazilian J. Physics, 38 (2008) 1.        [ Links ]

24. D. Cutowicz–Krusin, J. Procaccia, and J. Ross, J. Chem. Phys. 69 (1978) 3898.        [ Links ]

25. F.L. Curzon, B. Ahlborn, Am. J. Phys. 43 (1975) 22.        [ Links ]

26. M.H. Rubin, Phys. Rev. A. 19 (1979) 1272.        [ Links ]

27. M.H. Rubin, Phys. Rev. A. 22 (1980) 1741.        [ Links ]

28. A. De Vos, Am. J. Phys. 53 (1985) 570.        [ Links ]

29. A. De Vos, J. Phys. D: Appl. Phys. 20 (1987) 232.        [ Links ]

30. L. Chen, Z. Yan, J. Chem. Phys. 90 (1989) 3740.        [ Links ]

31. J.M. Gordon, Am. J. Phys. 58 (1990) 370.        [ Links ]

32. D. Ladino–Luna, Rev. Mex. Fis. 49 (2003) 87.        [ Links ]

33. L. Chen, F. Sun, and C. Wu, J. Phys. D: App. Phys. 32 (1999) 99.        [ Links ]

34. L. Chen, X. Zhu, F. Sun, and C. Wu, Appl. Energy 78 (2004) 305.        [ Links ]

35. S. Sieniutycz, and P. Kuran, Int. J. Heat Mass Transfer 48 (2005) 719.        [ Links ]

36. S. Sieniutycz, and P. Kuran, Int. J. Heat Mass Transfer, 49 (2006) 3264.        [ Links ]

37. M.A. Barranco–Jiménez, N. Sanchez–Salas, and F. Angulo–Brown, Rev. Mex. Fis. 54 (2008) 284.        [ Links ]

38. H. Song, L. Chen, J. Li, and C. Wu, J. Appl. Phys. 100 (2006) 124907.        [ Links ]

39. H. Song, L. Chen, and F. Sun, Appl. Energy 84 (2007) 374.         [ Links ]

40. J. Li, L. Chen, and F. Sun, Applied Energy 84 (2007) 944.        [ Links ]

41. H.B Callen, Thermodynamics and an Introduction to Thermostatics. (New York: Wiley, 1985).        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons