SciELO - Scientific Electronic Library Online

 
vol.54 número1Quantum bouncer with quadratic dissipationAn alternative deduction of relativistic transformations in thermodynamics índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.54 no.1 México feb. 2008

 

Investigación

 

Drag reduction by microbubble injection in a channel flow

 

C. del C. Gutiérrez Torresa, Y.A. Hassanb, J.A. Jiménez Bernalc, J.G. Barbosa Saldañad

 

a Instituto Politécnico Nacional, SEPI–ESIME Zacatenco, U.P. Adolfo López Mateos Edif. 5, 3er Piso Col. Lindavista, 07738, e–mail: cgutierrezt@ipn.mx

b Texas A&M University, Collage Station, Tx. 77843–3133, e–mail: y–hassan@tamu.edu

c Instituto Politécnico Nacional, SEPI–ESIME Zacatenco, U.P. Adolfo López Mateos Edif. 5, 3er Piso Col. Lindavista, 07738, e–mail: jjimenezb@ipn.mx

d Instituto Politécnico Nacional, SEPI–ESIME Zacatenco, U.P. Adolfo López Mateos Edif. 5, 3er Piso Col. Lindavista, 07738, e–mail: jbarbosas@ipn.mx

 

Recibido el 26 de marzo de 2007
Aceptado el 24 de enero de 2008

 

Abstract

The injection of microbubbles within the turbulent boundary layer in a channel is investigated to elucidate the drag reduction phenomenon. Experimental data for a fully developed flow were obtained using the Particle Image Velocimetry (PIV) technique for single–and two–phase flow. Both cases are compared to examine the effects of the presence of microbubbles within the boundary layer, specifically the modification of vorticity, vortex structures, and fluctuating rate of strain, which is directly related to the energy dissipation in turbulent flows. A notorious decrease in the rate of strain as well as vorticity was observed for the two–phase flow. These results are significant and will help to reveal the physical mechanism of drag reduction by injection of microbubbles.

Keywords: Microbubbles; drag reduction; channel flow.

 

Resumen

La inyección de microburbujas en la capa límite turbulenta en el flujo dentro de un canal es investigada para entender el fenómeno de reducción del arrastre. Resultados experimentales en un flujo totalmente desarrollado dentro de un canal cerrado fueron obtenidos utilizando la técnica de Velocimetría por Imágenes de Partículas (PIV) para una sola fase y dos fases. Ambos casos son comparados para analizar los efectos de la presencia de las microburbujas dentro de la capa límite. Específicamente las modificaciones en la vorticidad, vórtices y tasa de deformación. Esta última directamente relacionada con la disipación de energía en flujo turbulento. Estos resultados son significativos y pueden ayudar a entender de manera mas precisa el mecanismo físico de la reducción del arrastre por inyección de microburbujas.

Descriptores: Microburbujas; reducción del arrastre; flujo en un canal.

 

PACS: 47.60.+i

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. M.E. Mccormick and R. Bhattacharyya, Naval Engineers Journal April (1973) 11.        [ Links ]

2. C.L. Merkle and S. Deutsch, Frontiers in Experimental Fluid Mechanics Sen. Lecture Notes in Engineering 46 (1989) 291.        [ Links ]

3. Y. Kodama, A. Kakugawa, T. Takahashi, and H. Kawashima, Int. J Heat and Fluid Flow 21 (2000) 582.        [ Links ]

4. Y. Moriguchi and H. Kato, Journal of Marine Science and Technology 7 (2002) 79.        [ Links ]

5. J. Xu, M.R. Maxey, and G.E. Karniadakis, J. Fluid Mech. 468 (2002) 271.        [ Links ]

6. Madavan, N. K., Merkle, C.L. and Deutsch, S., J. Fluids Eng. Transactions of ASME 107 (1985) 370.        [ Links ]

7. A. Kanai & H. Miyata, Int. J. Numer. Meth Fluids 35 (2001) 593.        [ Links ]

8. M.M. Guin, H. Kato, H. Yamaguchi, M. Maeda, and M. Miyanaga, Journal of Marine Science and Technology 1 (1996) 241.        [ Links ]

9. J.A. Jiménez–Bernal, Y.A. Hassan, and C.C. Gutiérrez–Torres, Transactions of the American Nuclear Society 91 (2004) 237.        [ Links ]

10. E.E. Domínguez–Ontiveros, C.E. Estrada–Pérez, J.A. Jiménez–Bernal, and Y.A. Hassan, Transactions of the American Nuclear Society 91 (2004) 232.        [ Links ]

11. L. Zhen, and Y.A. Hassan, Transactions of the American Nuclear Society 91 (2004) 230.        [ Links ]

12. Y.A. Hassan, C.C. Gutiérrez–Torres, J. Jiménez–Bernal, Internacional Communications in Heat and Mass Transfer 32 (2005) 1009.        [ Links ]

13. A. Kitagawa, K. Hishida, and Y. Kodama, Experiments in Fluids 38 (2005) 466.        [ Links ]

14. L. Zhen and Y.A. Hassan, Chemical Engineering Science 61 (2006) 7107.        [ Links ]

15. P.S. Bernard and J.M. Wallace, Turbulent Flow Analysis, Measurement and Prediction, 1st. Edition (John Wiley and Sons, United States of America, 2002).        [ Links ]

16. P. Holmes, J.L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 1st . Edition (Cambridge University Press, United Kingdom, 1996).        [ Links ]

17. S.K. Robinson, Annu. Rev. Fluid Mech. 23 (1991) 601.        [ Links ]

18. H.J. Lugth, The dilemma of defining a vortex, In:Recent developments in theoretical and experimental fluid mechanics ed. V. Muller, K.G. Roesner, and B. Schmidt (Berlin: Springer–Verlag, 1979) p. 309.        [ Links ]

19. R.J. Adrian, K.T. Christensen, and Z. –C. Liu, Experiments in fluid 29 (2000) 275.        [ Links ]

20. A. Tsinober, An Informal Introduction to Turbulence, 1st. edition (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001).        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons