SciELO - Scientific Electronic Library Online

 
vol.53 suppl.1Electrochemical characteristics of Si/Mo multilayer anode for Li ion batteriesPolymerization of commercial Mexican sulfur índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.53  supl.1 México ene. 2007

 

Meso– and nano– magnetoelectricity: a review

 

M.E. Fuentesª, L. Fuentesb*, R. Oliverab, and M. Garcíab

 

ª Autonomous University of Chihuahua (UACh), Campus Universitario Chihuahua, Chih. 31000, México.

b Advanced Materials Research Center (CIMAV), Complejo Industrial Chihuahua, Miguel de Cervantes 120 Chihuahua, Chih. 31109, México, *e–mail: luis.fuentes@cimav.edu.mx

 

Recibido el 9 de junio de 2006
Aceptado el 5 de septiembre de 2006

 

Abstract

The physics of magnetoelectric phenomena, on different scales, is discussed. At macro– and mesoscopic levels, the best performance today is obtained by magnetostrictive–piezoelectric composites. Magnetoelectric coupling is obtained by means of an elastic link. The Carman model for magneto–elasto–electric interaction is presented. Recent experimental results are commented on. A mesoscopic analysis of single–phased magnetoelectric materials is presented. Effective properties of single–crystals and textured polycrystals are mathematically characterized and references to recent experimental reports are given. Some basic questions regarding the atomic–level physics of magnetoelectric multiferroics are discussed. Quantum mechanical conditions for the co–existence of ferroelectric and ferromagnetic structures are investigated. The approach of Spaldin and coworkers, and its computational implementation, are analyzed. The search for a critical size associated with ferroic phenomena is described. Representative contributions are mentioned. Experimental work and computational modeling running at CIMAV and UACh are described.

Keywords: Magnetoelectricity; multiferroic materials; nano–composites.

 

Resumen

Se discute la física de los fenómenos megnetoeléctricos a diferentes escalas. A niveles macro– y mesoscópico los compósitos magnetoestrictivo–piezoelectrico exhiben hoy los mejores desempeños. El acoplamiento magnetoeléctrico se obtiene mediante un vínculo elástico. Se presenta el modelo de Carman para la interacción magneto–elasto–eléctrica. Se comenta resultados experimentales representativos. Se expone un análisis mesoscópico de materiales magnetoeléctricos monofásicos. Se dan referencias a desarrollos experimentales recientes. Se discuten cuestiones básicas de la física de la magnetoelectricidad a nivel atómico. Se investigan las condiciones mecano–cuánticas para la coexistencia de ferroelectricidad y ferromagnetismo. Se describe la busqueda de un tamaño crítico para la desaparición de los efectos ferroicos. Se mencionan los trabajos experimentales y de computo desarrollados por CIMAV y la UACh en magnotoelectricidad.

Descriptores: Magnetoelectricidad; materiales multiferroicos; nanocompósitos.

 

PACS: 75.80.+q; 77.84.–s; 75.50.Dd

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

The present research was supported by CONACYT – Project CIAM 42361.

 

References

1. P. Curie, J. Phys. 3 (1984) 393.        [ Links ]

2. E. Ascher, H. Rieder, H. Schmid, and H. Stossel: J. Appl. Phys. 37 (1966) 1404.        [ Links ]

3. V. Suchetelene, Philips Res. Rep. 27 (1972) 28.        [ Links ]

4. K. Daido, K. Hoshikawa, and C. Uemura, AIP (Amer. Inst. Phys.) Conf. Proc. No. 10 (Pt. 2) (1973) 1416.        [ Links ]

5. T. Miura and E. Hirota, Patent JP 7541095 19750415 (1975).        [ Links ]

6. H. Schmid, Phys. Stat. Sol. 37 (1970) 209.        [ Links ]

7. R.E. Newnham and D.P Skinner, Mater. Res. Bull. 11 (1976) 1273.        [ Links ]

8. J.L. Prieto, C. Aroca, E. López, M.C. Sánchez, and P. Sánchez, IEEE Trans. on Magnetics 34 (1998) 3913.        [ Links ]

9. M.B. Kothale et al., Materials Chemistry and Physics 77 (2003) 691.        [ Links ]

10. G. Srinivasan et al., Physical Review B: Condensed Matter and Materials Physics 64 (2001) 214408/1–214408/6.        [ Links ]

11. F. Bouree et al., Acta Cryst. B 52 (1996) 217.        [ Links ]

12. S. V. Suryanarayana and A. Srinivas, Ceramic Transactions 106 (2000) 277.        [ Links ]

13. N. Loder, The Economist, January 1st (2005).        [ Links ]

14. IEEE Standard on Piezoelectricity. ANSI/IEEE Std. 176 (1987).        [ Links ]

15. Th. Hahn (Editor), "International Tables of Crystallography". Reidel Publ. Co., Dordrech, (1983).        [ Links ]

16. D.B. Litvin, Acta Crystallographica A 55 (1999) 884.        [ Links ]

17. J. Schlessman and D.B. Litvin, Acta Crystallographica A 57 (2001) 114.        [ Links ]

18. B. Shaparenko, J. Schlessman, and D.B. Litvin, Ferroelectrics 269 (2002) 9.        [ Links ]

19. I.C. Djeludev, Crystal Physics and Symmetry, Nauka (Moscow, Russian, 2000).        [ Links ]

20. A.S. Nowick, Crystal Properties Via Group Theory (Cambridge Univ. Press, Cambridge, 1995).        [ Links ]

21. Software SAMZ. Available (free of charge) at: http://www.cimav.edu.mx.        [ Links ]

22. T.H. O'Dell, International Journal of Magnetism 4 (1973) 239.        [ Links ]

23. J.P Rivera, H. Schmid, J.M. Moret, and H. Bill, International Journal of Magnetism 6 (1974) 211.        [ Links ]

24. C. Tabares–Muñoz, J.P. Rivera, A. Bezinges, A. Monnier, and H. Schmid, Japanese Journal of Applied Physics 24 (1985) 1051.        [ Links ]

25. J.P. Rivera, Ferroelectrics 161 (1994) 165.        [ Links ]

26. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, G.S. Kumar, and T. Bhimasankaram, Bulletin of Materials Science 21 (1998) 251.        [ Links ]

27. M. Lujan et al., Ferroelectrics 161 (1994) 77.        [ Links ]

28. J. Ohtani and K. Kohn, Rikogaku Kenkyusho Hokoku, Waseda Daigaku 102 (1982, in Japanese) 106.        [ Links ]

29. J. Matutes–Aquino, D. Bueno–Banqués, M.E. Botello–Zubiate, "Magnetoelectric materials" Second Metting of High Field Alfa Network, INSA Toulouse (2003).        [ Links ]

30. N. Hur et al., Nature 429 (2004) 392.        [ Links ]

31. T. Lottermoser et al., Nature 430 (2004) 541.        [ Links ]

32. H. Schmid, Ferroelectrics 204 (1997) 23.        [ Links ]

33. R. Seshadri and N.A. Hill, Chem. Mater. 13 (2001) 2892.        [ Links ]

34. T. Kimura et al., Nature 426 (2003) 55.        [ Links ]

35. B. Lorenz, "Coupling of Magnetic Order, Ferroelectricity and Lattice Strain in Multiferroic Rare Earth Manganites" ACerS 107th Congress (2005).        [ Links ]

36. B. Van Aken, T. Palstra, A. Filippetti, and N. Spaldin, Nature Materials 3 (2004) 164.        [ Links ]

37. M. Mahesh, A. Srinivas, G.S. Kumar, and S.V. Suryanarayana, J. Phys.: Condens. Matter 11 (1999) 8131.        [ Links ]

38. I. Sosnowska, R. Przenioslo, P. Fischer, and V.A. Murashov, J. Magn. Magn. Mater. 160 (1996) 384.        [ Links ]

39. J.P. Rivera, J. Korean Phys. Soc. 32 (1998) 1855.        [ Links ]

40. M. Lujan et al., Ferroelectrics 161 (1994) 77.        [ Links ]

41. M. Kumar, J.P. Rivera, Z.G. Ye, S.D. Gentil, and H. Schmid, Ferroelectrics 204 (1997) 57.        [ Links ]

42. J.P. Rivera, H. Schmid, J.M. Moret, and H. Bill, International Journal of Magnetism 6 (1974) 211.        [ Links ]

43. T. Ko, G. Bang, and J. Shin, Korean J. Ceram. 4 (1998) 83.        [ Links ]

44. A.R. James, G.S. Kumar, M. Kumar, S.V. Suryanarayana, and T. Bhimasankaram, Mod. Phys. Lett. 11 (1997) 633.        [ Links ]

45. A. Srinivas, S.V. Suryanarayana, G.S. Kumar, and M.M. Kumar, J. Phys.: Condens. Matter 11 (1999) 3335.        [ Links ]

46. A. Srinivas, D–W Kim, and S.V. Suryanarayana, Mater. Res. Bull. 39 (2004) 55.        [ Links ]

47. S. Chikazumi, Rigaku Denki Janaru 28 (1997, in Japanese).        [ Links ]

48. M. Muto, Y. Tanabe, T. Iizuka–Sakano, and E. Hanamura, Phys. Rev. B: Condens. Matter Mater. Phys. 57 (1998) 9586.        [ Links ]

49. Yu. Popov et al., Zh. Eksp. Teor. Fiz. 109 (1996, in Russian) 891.        [ Links ]

50. Yu. Popov et al., Zh. Eksp. Teor. Fiz. 114 (1998, in Russian) 263.        [ Links ]

51. N. Iwata, M. Uga, and K. Kohn, Ferroelectrics 204 (1997) 97.        [ Links ]

52. Y. Koyata and K. Kohn, Ferroelectrics 204 (1997) 115.        [ Links ]

53. Y Koyata, H. Nakamura, N. Iwata, A. Inomata, and K. Kohn, J. Phys. Soc. Jpn. 65 (1996) 1383.        [ Links ]

54. A. Ikeda and K. Kohn, Ferroelectrics 169 (1995) 75.        [ Links ]

55. S. Kato, K. Kohn, and M. Ishikawa, Ferroelectrics 203 (1997) 323.        [ Links ]

56. K. Saito and K. Kohn, J. Phys.: Condens. Matter 7 (1995) 2855.        [ Links ]

57. H. Wiegelmann, I.M. Vitebsky, A.A. Stepanov, A.G.M. Jansen, and P. Wyder, Key Eng Mater. 155 (1999) 429.        [ Links ]

58. H. Wiegelmann, I.M. Vitebsky, A.A. Stepanov, A.G.M. Jansen, and P. Wyder, Phys. Rev. B: Condens. Matter 55 (1997) 15304.        [ Links ]

59. F. Bouree et al., Acta Crystallogr., Sect. B: Struct. Sci. B 52 (1996) 217.        [ Links ]

60. L. Fuentes, A. Rodríguez, G. Aquino de los Ríos, and A. Muñoz–Romero, Integrated Ferroelectrics 71 (2005) 289.        [ Links ]

61. K. Srinivas, G. Prasad, T. Bhimasankaram and S.V. Suryanarayana, Mod Phys. Lett. 14 (2000) 663.        [ Links ]

62. G. Srinivasan, E.T. Rasmussen and R. Hayes, Physical Review B 67 (2003) 014418.        [ Links ]

63. M.I. Bichurin et al., Physical Review B 68 (2003) 132408.        [ Links ]

64. G. Srinivasan, C.P DeVreugd, C.S. Flattery, V.M. Laletsin, and N. Paddubnaya, Appl. Phys. Lett. 85 (12) (2004).        [ Links ]

65. J. Ryu, S. Priya, K. Uchino, and H–E. Kim, J. Electroceramics 8 (2002) 107.        [ Links ]

66. H. Camacho–Montes, R. Rodríguez–Ramos, J. Bravo–Castillero, R. Guinovart–Diaz, and F.J. Sabina, Integrated Ferrolectics 83 (2006) 49.        [ Links ]

67. Y. Fotinich and G. Carman, Integrated Ferroelectrics 71 (2005) 181.        [ Links ]

68. G. Bush and G. Carman, "Continuum Level Modeling of Linear Ferroelectro–magnetic Materials," Proceedings of the XIII International Materials Research Congress, S9–34, Cancun, Mexico (2004).        [ Links ]

69. Nersesse Nersessian, S.W. Or, and G. Carman, "Magneto–electric Effect In Magnetostrictive/Polymer And Piezoelectric Composites". Proceedings of IMECE'03 2003 ASME International Mechanical Engineering Congress Washington, D.C., November 15–21, (2003).        [ Links ]

70. C.W. Nan, M. Li, X. Feng, and S. Yu, Appl. Phys. Lett 78 (2001) 2527.        [ Links ]

71. C–W. Nan et al., Physical Review B: Condensed Matter and Materials Physics 71 (2005) 014102/1.        [ Links ]

72. I. Kornev et al., Physica B 271 (1999) 304.        [ Links ]

73. N.A. Hill, J. Phys. Chem. B 104 (2000) 6694.        [ Links ]

74. M. Ernzerhof and IP Perdew, J. Chem. Phys. 109 (1998) 3313.        [ Links ]

75. B.B. Van Aken, T.T.M. Palstra, A. Filippetti and N.A. Spaldin, Nature Materials 3 (2004) 164.        [ Links ]

76. M–H Tsai, Y–H Tang, and S.K. Dey, J. Phys.: Condens. Matter 15 (2003) 7901.        [ Links ]

77. P. Baettig and N.A. Spaldin, Applied Physics Letters 86 (2005) 012505/1.        [ Links ]

78. C.L. Chen et al., Appl. Phys. Lett. 78 (2001) 652.        [ Links ]

79. J. Wang et al., Science 299 (2003) 1719.        [ Links ]

80. K–Y Yun, D. Ricinshi, M. Noda, M. Okuyama, and S. Nasu, J. of the Korean Physical Society 46 (2005) 281.        [ Links ]

81. W. Eerenstein et al., Science 307 (2005) 1203.        [ Links ]

82. X. Qi et al., Applied Physics Letters 86 (2005) 071913/1.        [ Links ]

83. J.Y Son, B. Kim, C.H. Kim, and J.H. Cho, Appl. Phys. Lett. 84 (2004 4971).        [ Links ]

84. H. Zheng et al., Science 303 (2004) 661.        [ Links ]

85. G.B. Stephenson et al., Bull. Am. Phys. Soc. 47 Pt. 2 (2002) 893.        [ Links ]

86. S. Shetty, V.R. Palkar, and R. Pinto, Pramana–J. of Phys. 58 (2002) 1027.        [ Links ]

87. V. Nagarayan et al., Nature Materials 2 (2003) 43.        [ Links ]

88. D.D. Fong et al., Science 304 (2004) 1650.        [ Links ]

89. N.A. Spaldin, Science 304 (2004) 1606.        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons