SciELO - Scientific Electronic Library Online

 
vol.52 suppl.1The geometry and phase transition behavior of configuration mixing in the interacting boson modelSpace- and time-like electromagnetic form factors of the nucleon índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.52  supl.1 México ene. 2006

 

Selection rule and energetic stability. Complementary aspects of nuclear clusterization

 

A. Algora*, J. Cseh*, J. Darai** and P.O. Hess***

 

* Institute of Nuclear Research of the Hungarian Academy of Sciences Debrecen, Pf 51, Hungary–4001

** Institute of Experimental Physics, University of Debrecen, Debrecen, Bem tér 18/A, Hungary–4026

*** Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, C. U., Apartado Postal 70–543, 04510 México, D.F., México

 

Recibido el 2 de febrero de 2005
Aceptado el 18 de marzo de 2005

 

Abstract

The deformation–dependence of clusterization in atomic nuclei is investigated. In particular, allowed and forbidden cluster–configurations are determined for the ground, superdeformed, and hyperdeformed states of some light and heavy nuclei, based on a microscopic (real and effective SU (3)) selection rule. For light nuclei the real U (3) symmetry is used to characterize the parent and cluster nuclei. In the case of heavy nuclei our study is based on the application of the effective U (3) symmetry, which was first introduced for nuclei with large prolate deformation [1]. The stability of the different cluster configurations from the viewpoint of the binding energy [2] is also investigated for comparison.

Keywords: Binary and ternary clusterization; Pauli–principle; U (3) symmetry; Energetic preference.

 

Resumen

La dependencia de la clusterización de la deformación nuclear ha sido estudiada. En particular las configuraciones de cúmulos permitidas y prohibidas de algunos nucleos ligeros y pesados ha sido estudiada utilizando una regla de selección microscópica (U (3) real y efectiva). En el caso de los nucleos ligeros, la simetría U (3) real ha sido utilizada para caracterizar el nucleo padre y los cúmulos. En el caso de los nucleos pesados, nuestro estudio se basa en la aplicación de la simetría U (3) efectiva, que fue introducida por primera vez para nucleos con gran deformación prolata [1]. La estabilidad de las distintas configuraciones de cúmulos también ha sido estudiada desde el punto de vista de la preferencia energética [2] a efectos comparativos.

Descriptores: Clusterización binaria y ternaria; Principio de Pauli; Simetría U (3); preferencia energética.

 

PACS: 21.60.Fw;21.60.Gx

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgment

This work was supported by the OTKA (Grant Nos. T37502, T46791), the MTA–CONACyT joint project and by DGAPA (IN119002). A. Algora recognizes partial support of the Janos Bolyai research fellowship.

 

References

1. M. Jarrio, J.L. Wood, and D.J. Rowe, Nucl. Phys. A 528 (1991) 409.        [ Links ]

2. B. Buck, A.C. Merchant, and S.M. Pérez, Few–Body Systems 29 (2000) 53;         [ Links ] B. Buck, A.C. Merchant, M.J. Horner, and S.M. Pérez, Phys. Rev. C 61 (2000) 024314.        [ Links ]

3. B. Buck, A.C. Merchant, and S.M. Pérez, Phys. Rev. Lett. 76 (1996) 380, and references therein.        [ Links ]

4. J. Cseh, Phys. Lett. B 281 (1992) 173;         [ Links ] J. Cseh and G. Levai, Ann. Phys. (N.Y.) 230 (1994) 165.        [ Links ]

5. J.P Elliot, Proc. R. Soc. A 245 (1958) 128-562.        [ Links ]

6. J. Cseh, J. Phys. G 19 (1993) L97;         [ Links ] J. Cseh and W. Scheid, J. Phys. G 18 (1992) 1419.        [ Links ]

7. P. Rochford and D.J. Rowe, Phys. Lett B 210 (1988) 5;         [ Links ] D.J. Rowe, P. Rochford, and J. Repka, J. Math. Phys. 29 (1988) 572.        [ Links ]

8. P.O. Hess, A. Algora, M. Hunyadi, and J. Cseh, Eur. Phys. J. A 15 (2002) 449.        [ Links ]

9. P. Moller, J.R. Nix, W.D. Myers, and W.J. Swiatetecki, At. Nucl. Data Tables 59 185 (1995).        [ Links ]

10. D.J. Rowe, Rep. Prog. Phys. 48 (1985) 1419.        [ Links ]

11. M. Harvey Proceedings of the 2nd Conference on Clustering Phenomena on Nuclei, College Park, 1975, USDERA Report ORO–4856–26, p. 549.        [ Links ]

12. J. Cseh, A. Algora, J. Darai, and P.O. Hess, Phys. Rev. C 70 (2004) 034311.        [ Links ]

13. A. Algora and J. Cseh, J. Phys. G: Nucl. Part. Phys. 22 (1996) L39.        [ Links ]

14. C.E. Svensson et al., Phys. Rev. Lett. 85 (2000) 2693;         [ Links ] C.E. Svensson et al., Phys. Rev. C 63 (2001) 061301(R).        [ Links ]

15. T. Bengtsson and I. Ragnarsson, Nucl. Phys. A 436 (1985) 14;         [ Links ] A.V. Afanasjev and I. Ragnarsson, Nucl. Phys. A 591 (1995) 387.        [ Links ]

16. W.D.M. Rae and A.C. Merchant, Phys. Lett. B 279 (1992) 207.        [ Links ]

17. J.H. Hamilton et al., J. Phys. G20 (1994) L85;         [ Links ] A.V. Ramaya et al., Phys. Rev. Lett. 81 (1998) 947.        [ Links ]

18. S. Cwiok, W. Nazarewicz, J.X. Saladin, W. Plociennik, and A. Johnson, Phys. Lett. B 322 (1994) 304.        [ Links ]

19. A. Algora, J. Cseh, J. Darai, and P.O. Hess, in preparation        [ Links ]

20. G.A. Lalazissis and M.M. Sharma, Nucl. Phys. A 586 (1995) 201.        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons