SciELO - Scientific Electronic Library Online

 
vol.52 número4Failure probabilities associated with failure regions containing the origin: application to corroded pressurized pipelinesMagnetic properties of Fe nanoclusters: ab initio calculations of FeN N = 9,15, 27, 51, and 59 índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.52 no.4 México ago. 2006

 

Investigación

 

Designing the measurement cell of a swept–field differential aspiration condenser

 

A.A. Solis and E. Sacristán

 

Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana, Michoacán y Purísima, Col. Vicentina, Iztapalapa, México D.F., 09340, México.

 

Recibido el 25 de noviembre de 2005
Aceptado el 22 de marzo de 2006

 

Abstract

We present the description of a small–size and low–cost sensor based on the aspiration method that can be used as an ion–mobility spectrometer: the planar swept–field first–order differential aspiration condenser. A mathematical model for the measurement cell of the condenser has been developed, and in this paper a design strategy based on the model is described. A measurement cell has been constructed following this strategy and was used in a prototype aspiration condenser device. Some collector–plate ion–current curves have been measured for gas samples with several different anesthetic gases in different concentrations in order to evaluate the model and the design of the measurement cell. The inverse transform via the truncated singular value decomposition (TSVD) has been applied to the data to obtain ion–mobility spectra. The results suggest that, although the model simplifies the actual physical behavior of the ions, thereby causing some inconsistencies in the mobility spectra, it is still useful in the aspiration condenser's design process. The proposed device is an attractive small–size, cost–effective alternative for ion–mobility gas analysis applications.

Keywords: Aspiration condenser; gas monitoring; ionization; ionic mobility; spectrometry; Tammet transform.

 

Resumen

Presentamos la descripción de un nuevo sensor basado en el método de aspiración, pequeño y de bajo costo, que puede ser utilizado como un espectrómetro de movilidad iónica: el condensador de aspiración plano de primer orden con barrido de campo. Se ha desarrollado un modelo matemático de la celda de medición del sensor, y basado en éste se describe en este artículo un metodo estructurado para su diseño. Aplicando el método propuesto se ha construido una nueva celda de medición y se ha empleado en un condensador de aspiración prototipo. Se presentan a modo de evaluación del modelo y del diseño algunos espectros de movilidad iónica obtenidos por medio de la transformación inversa por truncamiento de la descomposición en valores singulares (TSVD) del modelo matemático, aplicada a las curvas de voltaje obtenidas mediante el sensor para una mezcla gaseosa con diferentes concentraciones de agentes anestésicos. Los resultados sugieren que, aunque el modelo simplifica el comportamiento físico de los iones, causando algunas inconsistencias en el espectro de movilidad, es de una gran utilidad en el proceso de diseno de un condensador. El dispositivo propuesto se perfila como una alternativa atractiva de bajo costo y tamaño pequeño para aplicaciones de análisis de gases por movilidad iónica.

Descriptores: Condensador de aspiración; monitoreo de gases; ionización; movilidad iónica; espectrometría; transformada de Tammet.

 

PACS: 02.30.Rz; 02.30.Zz; 07.81.+a; 51.50.+v

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. H.H. Hill, W.F. Siems, R.H. St Louis, and D.G. McMinn, An. Chem. 62 (1990) 1201A.        [ Links ]

2. G.A. Eiceman and Z. Karpas, Ion–Mobility Spectrometry (CRC Press Inc., Boca Raton FL, 1994).        [ Links ]

3. Karasek and W. Francis, An. Chemistry 46 (1974) 710.        [ Links ]

4. J. Brokenshire and N. Pay, "Ion–Mobility Spectrometry: A Promising Technology For Environmental Measurement" (International Laboratory, 1989).        [ Links ]

5. NASA, "Field–Domain Ion–Mobility Spectrometry", NASA Technical Support Package, KSC–11465.        [ Links ]

6. G.A. Eiceman "Adv. in Ion–Mobility Spectrometry: 1980–1990" (Critical Reviews in Analytical Chemistry, CRC Press Inc. 1991) p. 17.        [ Links ]

7. G. Thekkadath, "Simple Compact Ion–Mobility Spectrometer Having a Focusing Electrode Which Defines a Non–Uniform Field for the Drift Region", U.S. Pat. #5,189,301 (1993).        [ Links ]

8. W. Giese, Ann. Physik 17 (1882) 1, 236, 519.        [ Links ]

9. J.J. Thomson and E. Rutherford, Philos. Magazine 72 (1896) 392.        [ Links ]

10. P. Puumalainen, U.S. Pat. #5,047,723 (1991).        [ Links ]

11. A. Jenkins, U.S. Pat #4,831,254 (1989).        [ Links ]

12. Y. Sugiyama and Y. Sagamihara, U.S. Pat. 4,704,536 (1987)        [ Links ]

13. D.A. Blyth, U.S. Pat. #4,368,388 (1983).        [ Links ]

14. S.L. Allman, C. Chen, and F. Chen, U.S. Pat. #5,184,015 (1993).        [ Links ]

15. E. Sacristán, U.S. Pat. # 5,455,417 (1995).        [ Links ]

16. E. Sacristán and A. Solis, IEEE Trans. on Instrumentation and Measurement 47 (1998) 769.        [ Links ]

17. A. Solis, "Condensador de Aspiracion con Barrido de Campo para el Monitoreo de Gases Anestesicos", UAM Iztapalapa, Tesis de Maestría (1999).        [ Links ]

18. H.F. Tammet, "The Aspiration Method for the Determination of Atmospheric–Ion Spectra", Scientific Notes of Tartu State University, Issue 195, Transactions on Air Ionization and Electroaerosols, Tartu Estonia (1967) Translated from Russian by the Israel Program for Scientific Translations, Jerusalem (1970).        [ Links ]

19. E. Sacristán, "Ion–Mobility Method for Inhalation Anesthesia Monitoring", Ph.D. Dissertation, Worcester Polythecnic Institute, Worcester, MA (1993).        [ Links ]

20. P.C. Hansen, BIT 27 (1987) 534.        [ Links ]

21. K. Tuovinen, H. Paakkanen, O. Haanninen, and J. Ruuskanen, AIHA Journal 62 (2001) 80.        [ Links ]

22. A.P Snyder et al., "Portable, Handheld Instrumentation: Gas Chromatography / Ion–Mobility Spectrometer", Proceedings of the International Symposium on Field Screening Methods for Hazardous Waste and Toxic Chemicals, Las Vegas, NV 62 (1993)831.        [ Links ]

23. H.H. Hill, "Recent Developments in Ion–Mobility Spectrometry as a Chemical Sensor", NATO–Russia Workshop on Ecological Risks Associated with the Destruction of Chemical Weapons, Luneburg Germany (Oct 2003).        [ Links ]

24. H.H. Hill, "Ion–Mobility Comes of Age", Pittsburg Conference on Analytical Chemistry and Applied Spectroscopy (Mar 2003).        [ Links ]

25. J. Baker et al., "A Miniaturized Ion–Mobility Spectrometer (IMS) Sensor for Wireless Operation", FAME (Frontiers in Assessment Methods for the Environment) Symposium, Minneapolis, MN (Aug 2003).        [ Links ]

26. R.E. Ewing, G.J. Ewing, D.A. Atkinson, and G.A. Eiceman, Talanta 54 (2001) 515.        [ Links ]

27. G.A. Eiceman, E.G. Nazarov, J.A. Stone, Analytica Chimica Acta 493 (2003) 185.        [ Links ]

28. G.A. Eiceman, E.G. Nazarov, and R.A. Miller, International Journal of Ion–Mobility Spectrometry 62 (2001) 15.        [ Links ]

29. X. Feng, H.L. Wang, and Y.F. Guan, Progress in Chemistry 3 (2005) 514.        [ Links ]

30. G.A. Eiceman, D.B. Shoff, C.S. Harden, and A.P. Snyder, Anal. Chem. 61 (1989) 1093.        [ Links ]

31. "Finland's M90 Detector" Defence (Jul 1990) 46.        [ Links ]

32. H.H. Hill and G. Simpson, Field Analytical Chemistry and Technology 1 119.        [ Links ]

33. H. Paakkanen and J. Huttunen, Finnish Air Pollut. Prevent. News 5 (1994) 20.        [ Links ]

34. M. Kolehmainen, J. Ruuskanen, E. Rissanen, and O. Raatikainen, J. of the Air and Waste Manage. Assoc. 51 (2001) 96.        [ Links ]

35. K.Y Ong, T.L. Longworth, and J.L. Barnhouse, "Domestic Preparedness Program: Testing of M90–D1–C Chemical Warfare Agent Detector Against Chemical Warfare Agents", U.S. Army Chemical Research and Engineering Center, Aberdeen Proving Ground, MD Summary Report, ECBC–TR–###, UNCLASSIFIED (Dec 2000).        [ Links ]

36. M. Utriainen, "Surveillance and Detection Of C– and B–Agents by Aspiration Ion–Mobility Spectrometry–Based Chemical Detectors", International Conference on Toxicology ICTX 2004, Tampere, Finland Invited Lecture (Jul 2004).        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons