SciELO - Scientific Electronic Library Online

 
vol.49 número2Simulation of the motion of a sphere through a viscous fluidMagnetic fields of spherical, cylindrical, and elipsoidal electric charge superficial distributions at rotation índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.49 no.2 México abr. 2003

 

Enseñanza

 

Transition between quasi 2 and 3D behaviour of the binding energy of screened excitons in semiconducting quantum well structures

 

G.J. Vázqueza,*, M. del Castillo-Mussota, and J.A. Reyesa, J. Leeb y H.N. Spectorc

 

a Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México, D.F., México. * e-mail: jorge@fisica.unam.mx

b Department of Physics, Chung Yuan University, Jung-Li, Taiwan.

c Biological, Chemical, Physical Sciences Department, Illinois Institute of Technology, Chicago, IL 60616.

 

Recibido el 9 de enero de 2002.
Aceptado el 20 de septiembre de 2002.

 

Abstract

We have calculated the binding energy of screened excitons in a semiconducting quantum well structure as a function of screening parameter and the width of the quantum well using variational wave functions to obtain upper bounds for the energy. The binding energy decreases with increasing values of the screening parameter and with increasing well width. However, as long as the well width is narrow enough so the electrons and holes occupy their lowest-energy subbands, the exciton remains bound even for large values of the screening parameter whenever the electron gas remains nondegenerate.

Keywords: Binding energy of screened excitons; low-dimensional structures; semiconductors.

 

Resumen

Calculamos la energía de amarre de excitones apantallados en un pozo cuántico semiconductor como función del parámetro de apantallamiento y el ancho del pozo usando funciones de onda variacionales para obtener cotas máximas de la energía. La energía de amarre decrece al aumentar los valores del parámetro de apantallamiento y el ancho del pozo. Sin embargo, cuando el ancho del pozo sea suficientemente pequeño para que los electrones y huecos ocupen las sub-bandas de mínima energía, el excitón permanece ligado aun para valores grandes del parámetro de apantallamiento, siempre que el gas de electrones permanezca degenerado.

Descriptores: Energía de amarre de excitones apantallados; estructuras de baja dimensionalidad; semiconductores.

 

PACS: 78.20.-e; 78.66.-w; 78.66.FdI

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. G. Bastard, E.E. Mendez , L.L. Chang and L. Esaki, Phys. Rev. B 26 (1982) 1974.         [ Links ]

2. H.N. Spector, J. Lee and P. Melman, Superlattices and Microstructures 1 (1985) 149.         [ Links ]

3. W.S. Edelstein and H.N. Spector, Surface Science 224 (1989) 581.         [ Links ]

4. R. Dingle, W. Wiegmann and C.H. Henry, Phys. Rev. Lett. 33 (1974) 827.         [ Links ]

5. R.C. Miller, D.A. Kleinman, W.T. Tsang and A.C. Gossard, Phys. Rev. B 24 (1981) 1134.         [ Links ]

6. R.L. Greene, K.K. Bajaj and D.E. Phelps, Phys. Rev. B 29 (1984) 1807.         [ Links ]

7. Y. Shinozuki and M. Matsuuara, Phys. Reev. B 28 (1983) 4878;         [ Links ] Phys. Rev. B 29 (1984) 3717.         [ Links ]

8. D.A.B. Miller, D.S. Chemla, D.J. Eilenberger, P.W. Smith, A.C. Gossard and W.T. Tsang, Appl. Phys. Lett. 41 (1982) 679.         [ Links ]

9. D.S. Chemla et al., IEEE J. Quant. Electron. QE-20 (1984) 265.         [ Links ]

10. D.S. Chemla, T.C. Damen, D.A.B. Miller, A.C. Gossard and W. Wiegmann, Appl. Phys. Lett. 42 (1983) 864.         [ Links ]

11. D.A.B. Miller et al., Phys. Rev. B 32 (1985) 1043.         [ Links ]

12. D.A.B. Miller et al., Appl. Phys. Lett. 45 (1984) 13.         [ Links ]

13. T.H. Wood et al., Appl. Phys. Lett. 44 (1984) 16.         [ Links ]

14. E.X. Ping and H.X. Jiang, Phys. Rev. B 47 (1993) 2101.         [ Links ]

15. G. Pikus, Sov. Phys-Semiconductors 26 (1992) 26.         [ Links ]

16. A.B. Henriques, Phys. Rev. B 44 (1991) 3340.         [ Links ]

17. J. Lee, H.N. Spector and P. Melman, J. Appl. Phys. 58 (1985) 1893.         [ Links ]

18. F. Stern and W.E. Howard, Phys. Rev 163 (1967) 816.         [ Links ]

19. J.A. Brum, G. Bastard and C. Guillemot, Phys. Rev. B 30 (1984) 905.         [ Links ]

20. F. Stern, Phys. Rev. Lett. 18 (1967) 546.         [ Links ]

21. J. Lee and H.N. Spector, J. Appl. Phys. 54 (1983) 6989.         [ Links ]

22. O. Hipolito and V.B. Campos, Phys. Rev. B 19 (1979) 3083.         [ Links ]

23. P. Price, J. Vac. Sci. Technol. 19 (1981) 599.         [ Links ]

24. J.D. Dow and D. Redfield, Phys. Rev. B 5 (1972) 594.         [ Links ]

25. F.L. Lederman and J.D. Dow, Phys. Rev. B 13 (1976) 1633.         [ Links ]

26. I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products (Academic Press, New York, 1965), p. 710.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons