SciELO - Scientific Electronic Library Online

 
vol.48 issue6Magnetic properties of Fe1/CrN nanoinclusions in FePattern formation in oscillatory granular flows author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.48 n.6 México Dec. 2002

 

Investigación

 

The atomic and electronic structure of amorphous silicon nitride

 

F. Álvarez and A. A. Valladares*

 

Instituto de Investigaciones en Materiales, UNAM, Apartado Postal 70-360, 04510, México D.F., * e-mail: valladar@servidor.unam.mx

 

Recibido el 20 de marzo de 2002.
Aceptado el 2 de julio de 2002.

 

Abstract

Using a novel approach to the ab initio generation of random networks we constructed two nearly stoichiometric samples of amorphous silicon nitride with the same content x=1.29. The two 64-atom periodically-continued cubic diamond-like cells contain 28 silicons and 36 nitrogens randomly substituted, and were amorphized with a 6 fs time step by heating them to just below their melting temperature with a Harris-functional based, molecular dynamics code in the LDA approximation. The averaged total radial distribution function (RDF) obtained is compared with some existing Tersoff-like potential simulations and with experiment; ours agree with experiment. All the partial radial features are calculated and the composition of the second peak also agrees with experiment. The electronic structure is calculated and the optical gaps obtained using both a HOMO-LUMO approach and the Tauc-like procedure developed recently that gives reasonable gaps.

Keywords: Amorphous semiconductors; radial distribution functions; amorphous silicon nitride.

 

Resumen

Utilizando un enfoque innovador ab initio para la generación de redes estocásticas, hemos construido dos muestras casi estequiométricas de nitruro de silico amorfo con el mismo contenido x=1.29. Las dos celdas de 64 átomos, cúbicas tipo diamante, con condiciones periódicas, contienen 28 silicios y 36 nitrógenos substituidos al azar y fueron amortizadas con un time step de 6 fs calentándolas hasta una temperatura justo abajo de la de fusión, con un código de dinámica molecular, en la aproximación LDA, basado en la funcional de Harris. La función de distribución radial (RDF) total obtenida se compara con simulaciones clásicas que utilizan potenciales tipo Tersoff y con el experimento; las nuestras concuerdan con el experimento. Se calculan todas las características radiales parciales; la composición del segundo pico concuerda también con el experimento. La estructura electrónica también se calcula y las brechas (ópticas obtenidas, utilizando tanto un enfoque HOMO-LUMO, como el procedimiento tipo Tauc que desarrollaremos recientemente, dan brechas razonables.

Descriptores: Semiconductores amorfos; funciones de distribución radial; nitruro de silicio amorfo.

 

PACS: 71.23.Cq; 71.15.Pd; 71.55.Jv

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

A.A.V. thanks DGAPA-UNAM for financing Project IN101798 and IN100500. FA thanks CONACyT for supporting his PhD studies. This work was carried out on an Origin 2000 computer provided by DGSCA, UNAM.

 

References

1. R.N. Katz, Science 208 (1980) 841.         [ Links ]

2. A.Y. Liu and M.L. Cohen, Phys. Rev. B 41 (1990) 10727.         [ Links ]

3. M.J. Powell, B.C. Easton and O.F. Hill, Appl. Phys. Lett. 38 (1981)794.         [ Links ]

4. F. Álvarez, C.C. Díaz, Ariel A. Valladares and R.M. Valladares, Phys. Rev. B 65 (2002) 113108.         [ Links ]

5. A.A. Valladares, F. Álvarez, Z. Liu, J. Stitch and J. Harris, Eur. Phys. J. B 22 (2001)443.         [ Links ]

6. J.M. Poate in Electronic Materials. A New Era in Materials Science, edited by J.R. Chelikowsky and A. Franciosi (Springer-Verlag, Berlin, Heidelberg, 1991), p. 323.         [ Links ]

7. J. Tauc, in Optical properties of solids. edited by F. Abeles, (North Holland, Amsterdam, 1970).         [ Links ]

8. J. Robertson, Philos. Mag. B 63 (1991) 47.         [ Links ]

9. V.V. Voskoboynikov, V.A. Gritsenko, N.D. Dikovskaya, B.N. Saitsev, K.P. Mogilnicov, V.M Osadchii, S.P. Sinitsa and F.L. Edelman, Thin Solid Films 32 (1976) 339.         [ Links ]

10. S. Hasegawa, M. Matuura and Y. Kurata, Appl. Phys. Lett. 49 (1986) 1272;         [ Links ] E.A. Davis, N. Piggins and S.C. Bayliss, J. Phys. C 20 (1987) 4415;         [ Links ] M.M. Guraya, H. Ascolani, G. Zampieri, J.I. Cisneros, J.H. Dias da Silva and M.P. Cantão, Phys. Rev. B 42 (1990) 5677;         [ Links ] G. Santana and A. Morales-Acevedo, Solar Energy Materials & Solar Cells 60 (2000) 135.         [ Links ]

11. T. Aiyama, T. Fukunaga, K. Niihara, T. Hirai and K. Suzuki, J. Non-Cryst. Solids 33 (1979) 131;         [ Links ] M. Misawa, T. Fukunaga, K. Niihara, T. Hirai and K. Suzuki, J. Non-Cryst. Solids 34 (1979) 313;         [ Links ] T. Fukunaga, T. Goto, M. Misawa, T. Hirai and K. Suzuki, J. Non-Cryst. Solids 95 & 96 (1987) 1119.         [ Links ]

12. M. Misawa, T. Fukunaga, K. Niihara, T. Hirai and K. Susuki, J. Non-Cryst. Solids 34 (1979) 313.         [ Links ]

13. R. Karcher, L. Ley and R.L. Johnson, Phys. Rev. B 30 (1984) 1896.         [ Links ]

14. G. Sasaki, M. Kondo, S. Fujita and A. Sasaki, Jpn. J. Appl. Phys. 21 (1982) 1394.         [ Links ]

15. P. Ordejón and F. Ynduráin, J. Non-Cryst. Solids 137&138 (1991) 891.         [ Links ]

16. O. Borgen and H.M. Seip, Acta Chem. Scand. 15 (1961) 1789.         [ Links ]

17. F. de Brito Mota, J.F. Justo and A. Fazzio, Phys. Rev. B 58 (1998) 8323;         [ Links ] F. de Brito Mota, J.F. Justo and A. Fazzio, Int. J. Quantum Chem. 70 (1998) 973;         [ Links ] F. de Brito Mota, J.F. Justo and A. Fazzio, J. Appl. Phys. 86 (1999) 1843;         [ Links ] J.F. Justo, F. de Brito Mota and A. Fazzio, Multiscale Modelling of Materials. Symposium, Mater. Res. Soc. (1999) p. 555.         [ Links ]

18. Fernando Álvarez and Ariel A. Valladares, Appl. Phys. Lett. 80 (2002) 58.         [ Links ]

19. N.F. Mott and E.A. Davis, Electronic processes in non-crystalline materials (Oxford University Press, 1971) p. 238.         [ Links ]

20. FastStructure SimAnn, User Guide, Release 4.0.0 (San Diego, Molecular Simulations, Inc., September 1996).         [ Links ]

21. J. Harris, Phys. Rev. B 31 (1985) 1770.         [ Links ]

22. Xiao-Ping Li, J. Andzelm, J. Harris and A.M. Chaka, Chapter 26 in Chemical Applications of Density-Functional Theory, Eds. B.B. Laird, R.B. Ross and T. Ziegler (American Chemical Society, Washington, DC, 1996).         [ Links ]

23. S.H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, (1980) 1200.         [ Links ]

24. Z. Lin and J. Harris, J. Phys. Condens. Matter 5 (1992) 1055.         [ Links ]

25. B. Delley, J. Chem. Phys. 92 (1990) 508.         [ Links ]

26. S. Wild, P. Grieveson and K.H. Jack, The crystal structure of alpha and beta silicon and germanium nitrides. Special Ceramics 385 (1972).         [ Links ]

27. O.F. Sankey and D.J. Niklewsky, Phys Rev. B 40 (1989) 3979.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License