SciELO - Scientific Electronic Library Online

vol.48 issue6Theoretical studies of energy photoemission spectra (XPS) of S and SO2 adsorbed on Ni clusters by Hartree-Fock methodMagnetic properties of Fe1/CrN nanoinclusions in Fe author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.48 n.6 México Dec. 2002




The laser-backscattering equations and their application to the study of the atmospheric structure


R. Castrejón-García1, J. R. Varela2, J. R. Castrejón-Pita3, A. Morales4


1 Instituto de Investigaciones Eléctricas Av. Reforma 113, Col. Palmira, 62490 Temixco, Mor., México. e-mail:

2 Universidad Autónoma Metropolitana-Iztapalapa Av. Michoacán y la Purísima, Col. Vicentina, 09340, México, D. F. e-mail:

3 Centro de Investigación en Energía, Universidad Nacional Autónoma de México Apdo. Post. 34, Temixco, Mor., 62580, México. e-mail:

4 Centro de Ciencias Fósicas, Universidad Nacional Autónoma de México Apdo. Post. 48-3, Cuernavaca, Mor., 62251, México. e-mail:


Recibido el 19 de marzo de 2002.
Aceptado el 8 de julio de 2002.



In this work a method for interpreting backscattering signals acquired by a lidar is described. The method is based on the elastic scattering of laser radiation due to gases and particles suspended in the atmosphere (bulk effects). We propose a space-time diagram which helps to evaluate the arguments of the equation that serves to calculate the lidar signal in terms of the backscattering coefficient. We describe how the system detects gradients on this coefficient, along the laser optical path. To illustrate the method, we present some typical lidar results obtained in the neighborhood of Mexico City.

Keywords: Lidar; atmospheric light-backscattering; laser remote sensing.



En este trabajo se describe el desarrollo de un método que sirve para interpretar las seriales de retrodispersión adquiridas por un sistema similar al radar conocido como lidar. El método se basa en la dispersión elástica de radiación laser, producida por gases y partículas suspendidas en la atmósfera (efecto global). Presentamos un diagrama de espacio-tiempo que ayuda a evaluar los argumentos de la ecuación que permite calcular la señal lidar en términos del coeficiente de retrodispersión. Explicamos también, el procedimiento que permite detectar los gradientes de ese coeficiente a lo largo de la trayectoria óptica láser. Se muestran algunos resultados de la aplicación del método en sitios vecinos a la Ciudad de México.

Descriptores: Lidar; retrodispersión atmosférica de luz; detección remota con láser.


PACS: 42.68.Wt





R. C. G. expresses his gratitude to the Universidad Autónoma Metropolitana-Iztapalapa for providing him its intellectual atmosphere. This research was supported by the Consejo Nacional de Ciencia y Tecnología and the Instituto de Investigaciones Eléctricas and the DGAPA-UNAM (IN101100), México.



1. McClung, F. J. and R. W. Hellwarth, Giant Optical Pulsations from Ruby, J. Appl. Phys. 33 (1962) 828.         [ Links ]

2. Fiocco, G. and L. D. Smullin, Detection of Scattering Layers in the Upper Atmosphere (60-140 km) by Optical Radar, Nature. 199 (1963) 1275.         [ Links ]

3. Ligda, M. G. H., Proc. Conf. Laser Technol., San Diego, CA. (1963) 63.         [ Links ]

4. Carswell, A. Y., Lidar Measurements of the Atmosphere, Can. J. Phys. 61 (1983) 378 .         [ Links ]

5. Hamilton, P. M., The Application of a Pulsed-Light Rangefinder (lidar) to the Study of Chimney Plumes, Phil. Trans. R. Soc. London. 265 (1969) 153.         [ Links ]

6. Anfossi, D., P. Bacci and A. Longheto, An Application of Lidar Technique to the Study of the Nocturnal Radiation Inversion, Atmospheric Environment. 8 (1972) 537.         [ Links ]

7. McElroy, J. L. and M. R. McGown, Application of Airborne Lidar in Particulate Air Quality Problem Delineation, Monitoring Network Design and Control StrategyDevelopment, Air Waste Manage. Assoc. 42 (1982) 1186.         [ Links ]

8. Menut, L., C. Flamant, J. Pelón and P. H. Flamant, Urban Boundary Layer Height Determination from Lidar Measurements over the Paris Area, Appl. Optics. 38 (1999) 954.         [ Links ]

9. Di Girolamo, P., P. F. Ambrico, A. Amodeo, A. Boselli, G. Pappalardo and N. Spinelli), Aerosol Observations by Lidar in the Nocturnal Boundary Layer, Appl. Optics. 38 (1999) 4585.         [ Links ]

10. Bacci, P., G. Elisei and A. Longheto, Lidar Measurement of Plume Rise and Dispersion at Ostiglia Power Station, Atmospheric Environment 8 (1974) 1177.         [ Links ]

11. Hoff, R.M. and F.A. Froude, Lidar Observation of Plume Dispersion in Northern Alberta, Atmospheric Environment. 13 (1979) 35.         [ Links ]

12. Whaley, H. and G. K. Lee, An Assessment of Plume Dispersion Parameters Measured in Fall and Winter at Tar-Sand Refinery Complex, J. Air Pollution Control Assoc. 28 (6) (1978).         [ Links ]

13. McElroy, J. L., Estimation of Pollutant Transport and Distributions over Complex Terrain of Southern California Using Airborne Lidar, J. Air Pollution Control Assoc. 37 (1987) 1046.         [ Links ]

14. Moore, G. E, L. B. Milich and M. K. Liu, Plume Behaviors Using Lidar and SF6 Tracer at a Flat and Hilly Site, Atmospheric Environment. 22 (1988) 1673.         [ Links ]

15. Pawlosky, J. N. and D. Iverson, Use of Optical Remote Sensing Techniques to Monitor Facility Releases, Hydrocarbon Processing. 77 (1998)125.         [ Links ]

16. U.S. Code of Federal Regulations, Vol. 40, Environmental Protection Agency, Part 60, Appendix A, Alternative Method 1: Determination of the Opacity of Emissions from Stationary Sources Remotely By Lidar, 7-1-95. 662 (1995).         [ Links ]

17. Thomas, G. E, and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University Press, 1999), p. 72.         [ Links ]

18. Measures, R. M., Laser Remote Sensing (Wiley, New York, 1984).         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License